Festo Can Open Cmms

CAN Open for CMMS / CMMP Motor Controllers
View more...
   EMBED

Share

Preview only show first 6 pages with water mark for full document please download

Transcript

CANopen for Motor Controller CMMS/CMMD Manual CANopen CMMS-ST CMMS-AS CMMD-AS Manual 554 352 en 1012a [757 730] Original ________________________________________________________ de Edition ____________________________________________________en 1012a Designation____________________________________ P.BE-CMMS-CO-SW-EN Order no. ___________________________________________________554 352  (Festo AG & Co KG., D-73726 Esslingen, Germany, 2011) Internet: http://www.festo.com E-mail: [email protected] The reproduction of this document and disclosure to third parties and the utilisation or communication of its contents without explicit authorization is prohibited. Offenders will be held liable for compensation of damages. All rights reserved, in particular the right to carry out patent, utility model or ornamental design registrations. Festo P.BE-CMMS-CO-SW-EN 1012a 3 Index of revisions Author: Festo AG & Co. KG Name of manual: CANopen for Motor Controller CMMS/CMMD File name: File saved at: Consec. no. Description Index of revisions Date of amendment 001 Creation 0708NH 26.07.2007 002 Revision 1012a 17.02.2011 Trademarks CANopen® and CiA® are registered brand names of the respective brand holders in certain countries. 4 Festo P.BE-CMMS-CO-SW-EN 1012a CONTENTS CONTENTS 1. General remarks ..................................................................................................... 8 1.1 Intended use ......................................................................................................... 8 1.2 Safety instructions ................................................................................................ 8 1.3 Target group.......................................................................................................... 9 1.4 Service .................................................................................................................. 9 1.5 Important user instructions ................................................................................... 9 2. CANopen................................................................................................................ 12 2.1 Overview ............................................................................................................. 12 2.2 Cabling and Plug Assignment .............................................................................. 13 2.2.1 Pin allocations ..................................................................................... 13 2.2.2 Cabling Note ........................................................................................ 14 2.3 Activation of CANopen......................................................................................... 15 3. Access Procedure .................................................................................................. 17 3.1 Introduction......................................................................................................... 17 3.2 SDO Access ......................................................................................................... 18 3.2.1 SDO Sequences for Reading and Writing ............................................. 19 3.2.2 SDO Error Messages ............................................................................ 20 3.2.3 Simulation of SDO Access via RS232 ................................................... 21 3.3 PDO Message ...................................................................................................... 22 3.3.1 Description of the Objects ................................................................... 23 3.3.2 Objects for PDO Parameter Setting ...................................................... 26 3.3.3 Activation of PDOs ............................................................................... 30 3.4 SYNC-Message .................................................................................................... 30 3.5 EMERGENCY-Message ......................................................................................... 31 3.5.1 Structure of the EMERGENCY-Message................................................ 31 3.5.2 Description of the Objects ................................................................... 43 3.6 Heartbeat / Bootup (Error Control Protocol)........................................................ 45 3.6.1 Structure of the Heartbeat Message .................................................... 45 3.6.2 Structure of the Bootup Message ........................................................ 46 3.6.3 Description of the Objects ................................................................... 46 3.7 Network Management (NMT Service) .................................................................. 47 3.8 Nodeguarding (Error Control Protocol) ................................................................ 49 3.8.1 Overview.............................................................................................. 49 3.8.2 Structure of the Nodeguarding Messages............................................ 49 3.8.3 Description of the Objects ................................................................... 50 3.9 Table of Identifiers .............................................................................................. 51 Festo P.BE-CMMS-CO-SW-EN 1012a 5 CONTENTS 4. Setting Parameters ............................................................................................... 52 4.1 Load and Save Parameter Sets ............................................................................ 52 4.1.1 Overview.............................................................................................. 52 4.1.2 Description of the Objects ................................................................... 53 4.2 Conversion Factors (Factor Group) ...................................................................... 55 4.2.1 Overview.............................................................................................. 55 4.2.2 Description of the Objects ................................................................... 56 4.3 Output stage parameter ...................................................................................... 67 4.3.1 Overview.............................................................................................. 67 4.3.2 Description of the Objects ................................................................... 67 4.4 Current Regulator and Motor Adjustment............................................................ 69 4.4.1 Overview.............................................................................................. 69 4.4.2 Description of the Objects ................................................................... 70 4.5 Speed regulator................................................................................................... 75 4.5.1 Overview.............................................................................................. 75 4.5.2 Description of the Objects ................................................................... 75 4.6 Position Controller (Position Control Function).................................................... 77 4.6.1 Overview.............................................................................................. 77 4.6.2 Description of the Objects ................................................................... 79 4.7 Setpoint value limitation ..................................................................................... 85 4.7.1 Description of the objects .................................................................... 85 4.8 Digital inputs and outputs ................................................................................... 87 4.8.1 Overview.............................................................................................. 87 4.8.2 Description of the Objects ................................................................... 87 4.9 Limit switch ......................................................................................................... 89 4.9.1 Overview.............................................................................................. 89 4.9.2 Description of the Objects ................................................................... 89 4.10 Sampling of positions.......................................................................................... 90 4.10.1 Overview.............................................................................................. 90 4.10.2 Description of the Objects ................................................................... 90 4.11 Device Information .............................................................................................. 91 4.11.1 Description of the Objects ................................................................... 92 4.12 Error management............................................................................................... 95 4.12.1 Overview.............................................................................................. 95 4.12.2 Description of the Objects ................................................................... 95 6 Festo P.BE-CMMS-CO-SW-EN 1012a CONTENTS 5. Device Control ....................................................................................................... 97 5.1 Status Diagram (State Machine).......................................................................... 97 5.1.1 Overview.............................................................................................. 97 5.1.2 Status diagram of the motor controller (State Machine) ...................... 98 5.1.3 controlword (control word) ................................................................ 102 5.1.4 Read-out of the motor controller status............................................. 105 5.1.5 statusword (Status words)................................................................. 106 6. Operating modes ................................................................................................ 111 6.1 Setting the operating mode............................................................................... 111 6.1.1 Overview............................................................................................ 111 6.1.2 Description of the Objects ................................................................. 111 6.2 Operating mode homing (Homing Mode) .......................................................... 113 6.2.1 Overview............................................................................................ 113 6.2.2 Description of the Objects ................................................................. 114 6.2.3 Reference Travel Processes ............................................................... 117 6.2.4 Control of Reference Travel................................................................ 121 6.3 Positioning Operating Mode (Profile Position Mode)......................................... 122 6.3.1 Overview............................................................................................ 122 6.3.2 Description of the Objects ................................................................. 123 6.3.3 Functional description ....................................................................... 127 6.4 Interpolated Position Mode ............................................................................... 129 6.4.1 Overview............................................................................................ 129 6.4.2 Description of the Objects ................................................................. 130 6.4.3 Functional description ....................................................................... 135 6.5 Speed adjustment operating mode (Profile Velocity Mode) .............................. 137 6.5.1 Overview............................................................................................ 137 6.5.2 Description of the Objects ................................................................. 139 6.6 Torque regulation operating mode (Profile Torque Mode) ................................ 144 6.6.1 Overview............................................................................................ 144 6.6.2 Description of the Objects ................................................................. 145 7. Index ................................................................................................................... 149 Festo P.BE-CMMS-CO-SW-EN 1012a 7 1. General remarks 1. General remarks 1.1 Intended use This manual describes how the motor controller of the CMMS/CMMD series can be integrated into a CANopen network environment. It describes setting of the physical parameters, activation of CANopen protocol, integration into the CAN network and communication with the motor controller. It is directed at people who are already familiar with this motor controller series. It contains safety instructions which must be followed. The complete set of information can be found in the documentation for the motor controller in question: - Description P.BE-CMM...-HW-...: Mechanics – electrical engineering – function range overview Note Always observe the safety-related instructions listed in the product manual for the motor controller being used. 1.2 Safety instructions When commissioning and programming positioning systems, you must always observe the safety regulations in this manual as well as those in the operating instructions for the other components used. The user must make sure that nobody is within the sphere of influence of the connected actuators or axis system. Access to the potential danger area must be prevented by suitable measures such as barriers and warning signs. Warning Axes can move with high force and at high speed. Collisions can lead to serious injury to human beings and damage to components. Make sure that nobody can reach into the sphere of influence of the axes or other connected actuators and that no items are within the positioning range while the system is connected to energy sources. 8 Festo P.BE-CMMS-CO-SW-EN 1012a 1. General remarks Warning Faults in the parametrisation can cause injury to human beings and damage to property. Enable the controller only if the axis system has been correctly installed and parametrised. 1.3 Target group This manual is intended exclusively for technicians trained in control and automation technology, who have experience in installing, commissioning, programming and diagnosing positioning systems. 1.4 Service Please consult your local Festo Service or write to the following e-mail address if you have any technical problems: [email protected] 1.5 Important user instructions Danger categories This description contains instructions on the possible dangers which can occur if the product is not used correctly. These instructions are marked (Warning, Caution, etc), printed on a shaded background and marked additionally with a pictogram. A distinction is made between the following danger warnings: Warning ... Means that failure to observe this instruction may result in serious personal injury or damage to property. Caution ... Means that failure to observe this instruction may result in personal injury or damage to property. Note ... Means that failure to observe this instruction may result in damage to property. Festo P.BE-CMMS-CO-SW-EN 1012a 9 1. General remarks The following pictogram marks passages in the text which describe activities with electrostatically sensitive devices: Electrostatically sensitive devices: Incorrect handling can result in damage to components. Identification of specific information The following pictograms designate texts that contain special information. Pictograms Information: Recommendations, tips and references to other sources of information Accessories: information on necessary or useful accessories for the Festo product. Environment: information on environmentally friendly use of Festo products. Text designations • Bullet points indicate activities that may be carried out in any order. 1. Numerals denote activities which must be carried out in the numerical order specified. - Arrowheads indicate general lists. About the Version This description refers to versions corresponding to Table 1.1 10 Festo P.BE-CMMS-CO-SW-EN 1012a 1. General remarks You can find the specifications on the version status as follows: - Hardware version and firmware version in the Festo Configuration Tool (FCT) with active device connection under "Controller" Controller Firmware Comment CMMS-ST-... From Version 1.3.0.1.14 Standard motor controller for stepper motors CMMS-AS-... From Version 1.3.0.1.16 Standard motor controller for servo motors CMMD-AS-... From Version 1.4.0.3.2 Standard double motor controller for servo motors Table 1.1 Controller and firmware versions For older versions: Use the related older version of this document, if applicable. Note With newer firmware versions, check whether there is a newer version of this description available: www.festo.com Festo P.BE-CMMS-CO-SW-EN 1012a 11 2. CANopen 2. CANopen 2.1 Overview CANopen is a standard worked out by the "CAN in Automation" association. A number of device manufacturers are organised in this association. This standard has largely replaced the current manufacturer-specific CAN protocols. As a result, the end user has a manufacturer-independent communication interface. The following manuals, among others, can be obtained from this association: CiA Draft Standard 201-207: These documents cover the general principles and embedding of CANopen into the OSI layered architecture. The relevant points of this book are presented in this CANopen manual, so procurement of DS201 ... 207 is generally not necessary. CiA Draft Standard 301: This book describes the fundamental design of the object directory of a CANopen device and access to it. The statements of DS201 ... 207 are also made concrete. The elements of the object directory needed for the CMMS/CMMD motor controller families and the related access methods are described in this manual. Procurement of DS301 is recommended but not absolutely necessary. CiA Draft Standard 402: This book covers concrete implementation of CANopen in drive regulators. Although all implemented objects are also briefly documented and described in this CANopen manual, the user should have this book available. Source of supply: CAN in Automation (CiA) International Headquarters Am Weichselgarten 26 D-91058 Erlangen Tel.: 09131-601091 Fax: 09131-601092 www.can-cia.de The CANopen implementation of the motor controller is based on the following standards: 12 [1] CiA Draft Standard 301, Version 4.02, 13. February 2002 [2] CiA Draft Standard Proposal 402, Version 2.0, 26. July 2002 Festo P.BE-CMMS-CO-SW-EN 1012a 2. CANopen 2.2 Cabling and Plug Assignment 2.2.1 Pin allocations For the CMMS/CMMD family of devices, the CAN interface is already integrated into the motor controller and thus is always available. The CAN bus connection is designed as a 9-pole DSUB plug (on the controller side) in accordance with standards. 1 CAN-L 2 CAN-GND 3 CAN-Shield 5 4 CAN-H 4 1 2 5 CAN-GND 3 Fig. 2.1 CAN plug connector for CMMS/CMMD Note CAN bus cabling When cabling the motor controller via the CAN bus, you should always comply with the following information and remarks to obtain a stable, malfunction-free system. If cabling is improperly done, malfunctions can occur on the CAN bus during operation. These can cause the motor controller to shut off with an error for safety reasons. Festo P.BE-CMMS-CO-SW-EN 1012a 13 2. CANopen 2.2.2 Cabling Note The CAN bus offers a simple, interference resistant method of networking all the components of a system together. But the prerequisite for this is that all subsequent cabling instructions are observed. Fig. 2.2 Cabling example - The individual nodes of the network are connected point-to-point to each other, so the CAN cable is looped from controller to controller (see Fig. 2.2). - At both ends of the CAN cable, there must be an end resistor of exactly 120 Ω +/- 5 %. This is often already installed in CAN cards or PLCs and, if so, this must be taken into account. The end resistor is activated via DIP switch 12 (see Fig. 2.3). - For wiring, screened cable with exactly two twisted pairs of wires must be used. A twisted pair of wires is used for connection of CAN-H and CAN-L. The wires of the other pair are used together for CAN-GND. For all nodes, the screening of the cable is guided to the CAN-Shield connections. A table with the technical data of usable cables is located at the end of this chapter. - The use of intermediate plugs is not recommended for CAN bus cabling. If this is unavoidable, then metallic plug housings should be used to connect the cable screening. - To keep the disturbance coupling as low as possible, motor cable should not be laid parallel to signal lines. Motor cable carried out in accordance with specifications. The motor cables must be correctly screened and earthed. - - 14 For more information on constructing interference-free CAN bus cabling, refer to the Controller Area Network protocol specification, Version 2.0 from Robert Bosch GmbH, 1991. Technical data, CAN bus cable: 2 pairs of 2 twisted leads, d ≥ 0.22 mm2 Loop resistance < 0.2 Ω/m Screened Impedance 100-120 Ω Festo P.BE-CMMS-CO-SW-EN 1012a 2. CANopen 2.3 Activation of CANopen The CAN interface is activated with the protocol CANopen, and the node number and baud rate are adjusted one time via the DIP switches of the motor controller. 1 DIP switches 1-7: Node number 2 DIP switches 9-10: Bitrate DIP switch 11: Activation DIP switch 12: Terminating resistor 1 2 Fig. 2.3 DIP switches EXAMPLE Node number: DIP switches 1 2 3 4 5 6 7 ON/OFF ON ON OFF ON ON OFF ON Significance DIP switch 1 is the lowest-value bit 1011011 = 91 DIP switches 9 ON/OFF ON 10 OFF Significance DIP switch 9 is the lowest-value bit 00=125 kBit/s 01=250 kBit/s (example) 10=500 kBit/s 11=1000 kBit/s Baud rate: Festo P.BE-CMMS-CO-SW-EN 1012a 15 2. CANopen A total of 2 different parameters must be set: - Base node number A node number, which may occur only once in the network, must be assigned to each participant for unambiguous identification. The device is addressed via this node number. - Bitrate This parameter determines the bitrate in kbit/s used on the CAN bus. Note that high baud rates require a low maximum cable length. All devices present in a CANopen network send a bootup message over the bus containing the node number of the transmitter. Finally, the CANopen protocol in the motor controller can be activated. Observe that the named parameters can only change if the CAN-bus is deactivated. Note that the parameter setting of the CANopen function remains intact after a reset if the parameter set of the motor controller was saved. CAN address for CMMD-AS The two axes have a separate CAN address. The address of axis 1 is set at the DIP switches. Axis 2 is always assigned the subsequent address: CAN address axis 2 = CAN address axis 1 + 1 16 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure 3. Access Procedure 3.1 Introduction CANopen makes available a simple and standardised possibility to access the parameters of the motor controller (e.g. the maximum motor current). To achieve this, a unique number (index and subindex) is assigned to each parameter (CAN object). The totality of all adjustable parameters is designated an object directory. Essentially two methods are available for accessing CAN objects via the CAN bus: a confirmed access type, in which the motor controller acknowledges each parameter access (via so-called SDOs), and an unconfirmed access type, in which no acknowledgement is made (via so-called PDOs). Control Assignment of control CMMS/ CMMD CMMS/ CMMD Control SDO PDO (transmit PDO) Confirmation from the controller Confirmation from the controller Control Data from controller CMMS/ CMMD PDO (receive PDO) Fig. 3.1 Access Procedure As a rule, the motor controller is parametrised and also controlled via SDO access. In addition, other types of messages (so-called communication objects), which are sent either by the motor controller or the higher-level controller, are defined for special application cases: SDO Service Data Object Are used for normal parameter setting of the motor controller. PDO Process Data Object Fast exchange of process data (e.g. actual speed) possible. SYNC Synchronization Message Synchronisation of multiple CAN nodes EMCY Emergency Message Transmission of error messages. Festo P.BE-CMMS-CO-SW-EN 1012a 17 3. Access Procedure NMT Network Management Network service: All CAN nodes can be worked on simultaneously, for example. HEARTBEAT Error Control Protocol Monitoring of the communications participants through regular messages. Every message sent on the CAN bus contains a type of address which is used to determine the bus participant for which the message is meant. This number is designated the identifier. The lower the identifier, the greater the priority of the message. Identifiers are established for the above-named communication objects. The following sketch shows the basic design of a CANopen message: Number of data bytes (here 8) Data bytes 0 … 7 601h Len D0 D1 D2 D3 D4 D5 D6 D7 Identifier 3.2 SDO Access The Service Data Objects (SDO) permit access to the object directory of the motor controller. This access is especially simple and clear. It is therefore recommended to build up the application at first only with SDOs and only later to convert to the faster but also more complicated Process Data Objects (PDOs). SDO access always starts from the higher-level controller (Host). This either sends the motor controller a write command to modify a parameter in the object directory, or a read command (READ) to read out a parameter. For each command, the host receives an answer that either contains the read-out value or – in the case of a write command – serves as an acknowledgement. For the motor controller to recognise that the command is meant for it, the host must send the command with a specific identifier. This consists of the base 600h + node number of the motor controller involved. The motor controller answers accordingly with the identifier 580h + node number. The design of the commands or answers depends on the data type of the object to be read or written, since either 1, 2 or 4 data bytes must be sent or received. The following data types are supported: 18 UINT8 8 bit value without algebraic sign 0 … 255 INT8 8 bit value with algebraic sign -128 … 127 UINT16 16 bit value without algebraic sign 0 … 65535 INT16 16 bit value with algebraic sign -32768 … 32767 UINT32 32 bit value without algebraic sign 0 … (232-1) INT32 32 bit value with algebraic sign -(231) … (231-1) Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure 3.2.1 SDO Sequences for Reading and Writing To read out or describe objects of these number types, the following listed sequences are used. The commands for writing a value into the motor controller begin with a different identifier, depending on the data type. The answer identifier, in contrast, is always the same. Read commands always start with the same identifier, and the motor controller answers differently, depending on the data type returned. All numbers are kept in hexadecimal form. Read commands Low byte of the main index (hex) Write commands Identifier for 8 bit High byte of the main index (hex) UINT8 / INT8 Subindex (hex) Command 40h IX0 IX1 SU 2Fh IX0 IX1 SU DO Answer: 4Fh IX0 IX1 SU D0 60h IX0 IX1 SU UINT16 / INT16 Identifier for 16 bit Identifier for 8 bit Command 40h IX0 IX1 SU 2Bh IX0 IX1 SU DO D1 Answer: 4Bh IX0 IX1 SU D0 D1 60h IX0 IX1 SU UINT32 / INT32 Identifier for 32 bit Identifier for 16 bit Command 40h IX0 IX1 SU 23h IX0 IX1 SU DO D1 D2 D3 Answer: 43h IX0 IX1 SU D0 D1 D2 D3 60h IX0 IX1 SU Identifier for 32 bit EXAMPLE Reading obj. 6061_00h Writing obj. 1401_02h Return data: 01h Data: EFh Command 40h 61h 60h 00h 2Fh 01h 14h 02h EFh Answer: 4Fh 61h 60h 00h 01h 60h 01h 14h 02h Reading obj. 6041_00h Writing obj. 6040_00h Return data: 1234h Data: 03E8h Command 40h 41h 60h 00h 2Bh 40h 60h 00h E8h 03h Answer: 4Bh 41h 60h 00h 34h 12h 60h 40h 60h 00h Reading obj. 6093_01h Writing obj. 6093_01h Return data: 12345678h Data: 12345678h Command 40h 93h 60h 01h 23h 93h 60h 01h 78h 56h 34h 12h Answer: 43h 93h 60h 01h 78h 56h 34h 12h 60h 93h 60h 01h UINT8 / INT8 UINT16 / INT16 UINT32 / INT32 Festo P.BE-CMMS-CO-SW-EN 1012a 19 3. Access Procedure Caution The acknowledgement from the motor controller must always be waited for. Only when the motor controller has acknowledged the request may additional requests be sent. 3.2.2 SDO Error Messages In case of an error when reading or writing (for example, because the written value is too large), the motor controller answers with an error message instead of the acknowledgement: Command … IX0 IX1 SU … … … … Answer: 80h IX0 IX1 SU F0 F1 F2 F3 Error identifier Error code (4 byte) Error code F3 F2 F1 F0 Significance 06 01 00 00h Access type is not supported. 06 02 00 00h The addressed object does not exist in the object directory 06 04 00 41h The object must not be entered into a PDO 06 04 00 42h The length of the objects entered in the PDO exceeds the PDO length 06 07 00 10h Protocol error: Length of the service parameter does not agree 06 07 00 12h Protocol error: Length of the service parameter is too large 06 07 00 13h Protocol error: Length of the service parameter is too small 06 09 00 11h The addressed subindex does not exist 06 01 00 01h Read access to an object that can only be written 06 01 00 02h Write access to an object that can only be read 06 04 00 47h Overflow of an internal variable / general error 06 06 00 00h Access faulty due to a hardware problem *1) 05 03 00 00h Protocol error: Toggle bit was not changed 05 04 00 01h Protocol error: Client / server command specifier invalid or unknown 06 09 00 30h The data exceed the range of values of the object 06 09 00 31h The data are too large for the object 06 09 00 32h The data are too small for the object 06 09 00 36h Upper limit is less than lower limit 08 00 00 20h Data cannot be transmitted or stored *1) 08 00 00 21h Data cannot be transmitted or stored, since the motor controller is working locally 08 00 00 22h Data cannot be transmitted or stored, since the motor controller for this is not in the correct state *3) 08 00 00 23h There is no object dictionary available *2) 20 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure *1) Returned in accordance with DS301 in case of incorrect access to store_parameters / restore_parameters. *2) This error is returned, for example, when another bus system controls the motor controller or the parameter access is not permitted. *3) "Status" here should be understood in general: It may be a problem of the incorrect operating mode or a technology module that is not available or the like. 3.2.3 Simulation of SDO Access via RS232 The firmware of the motor controller offers the possibility to simulate SDO access via the RS232 interface. In this way, after being written, objects in the test phase can be read and checked via the CAN bus over the RS232 interface. Application creation is simplified through use of the start-up software Festo Configuration Tool (FCT) with the related plugin. The syntax of the commands is: Read commands Write commands Main index (hex) UINT8 / INT8 Subindex (hex) Command ? XXXX SU = XXXX SU: WW Answer: = XXXX SU: WW = XXXX SU: WW UINT16 / INT16 8 bit data (hex) Command ? XXXX SU = XXXX SU: WWWW Answer: = XXXX SU: WWWW = XXXX SU: WWWW UINT32 / INT32 16 bit data (hex) Command ? XXXX SU = XXXX SU: WWWWWWWW Answer: = XXXX SU: WWWWWWWW = XXXX SU: WWWWWWWW 32 bit data (hex) Note that the commands are entered as characters without any blanks. Caution Never use these test commands in applications! Access via RS232 only serves test purposes and is not suitable for real-time-capable communication. In addition, the syntax of the test commands can be changed at any time. Festo P.BE-CMMS-CO-SW-EN 1012a 21 3. Access Procedure 3.3 PDO Message With Process Data Objects (PDOs), data can be transmitted in an event-driven manner. The PDO thereby transmits one or more previously established parameters. Other than with an SDO, there is no acknowledgement when a PDO is transmitted. After PDO activation, all recipients must therefore be able to process any arriving PDOs at any time. This normally means a significant software effort in the host computer. This disadvantage is offset by the advantage that the host computer does not need to cyclically query parameters transmitted by a PDO, which leads to a strong reduction in CAN bus capacity utilisation. EXAMPLE The host computer would like to know when the motor controller has completed a positioning from A to B. When SDOs are used, it must constantly, such as every millisecond, query the statusword object, with which it uses up the bus capacity. When a PDO is used, the motor controller is parametrised at the start of the application in such a way that, with every change in the statusword object, a PDO containing the statusword object is deposited. Instead of constantly querying, the host computer thus automatically receives a corresponding message as soon as the event occurs. A distinction is made between the following types of PDOs: Transmit-PDO................... Controller  Host Receive-PDO .................... Host  Controller Motor controller sends PDO when a certain event occurs Motor controller evaluates PDO when a certain event occurs The motor controller has two transmit and two receive PDOs. Almost all objects of the object directory can be entered (mapped) into the PDOs; that is, the PDO contains all data, e.g. the actual speed, the actual position, or the like. The motor controller must first be told which data have to be transmitted, since the PDO only contains reference data and no information about the type of parameter. In the example below, the actual position is transmitted in the data bytes 0 … 3 of the PDO and the actual speed in the bytes 4 … 7. Number of data bytes (here 8) Start actual speed (D4 … D7) 181h Len Identifier D0 D1 D2 D3 D4 D5 D6 D7 Start actual position (D0 ... D3) In this way, almost any desired data telegrams can be defined. The following chapters describe the settings necessary for this. 22 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure 3.3.1 Description of the Objects Identifier of the PDO cob_id_used_by_pdo In the object cob_id_used_by_pdo, the identifier in which the respective PDO is sent or received is entered. If bit 31 is set, the respective PDO is deactivated. This is the default setting for all PDOs. The COB-ID may only be changed if the PDO is deactivated, that is, bit 31 is set. Therefore, the following process must be followed to change the COB-ID: - Reading the COB-ID - Writing the read COB-ID + 80000000h - Writing the new COB-ID + 80000000h - Writing the newCOB-ID, the PDO is active again. The set bit 30 shows when the identifier is read that the object cannot be queried by a remote frame. This bit is ignored during writing and is always set during reading. Number of objects to be transmitted number_of_mapped_objects This object specifies how many objects should be mapped into the corresponding PDO. The following limitations must be observed: A maximum of 4 objects can be mapped per PDO. A PDO may have a maximum of 64 bits (8 bytes). Objects to be transmitted first_mapped_object … fourth_mapped_object For each object contained in the PDO, the motor controller must be told the corresponding index, subindex and length. The stated length must agree with the stated length in the object dictionary. Parts of an object cannot be mapped. The mapping information has the following format: Main index of the object to be mapped (hex) Subindex of the object to be mapped (hex) Length of the object xxx_mapped_object Index Sub-index (16 bits) (8 bits) Festo P.BE-CMMS-CO-SW-EN 1012a Length (8 bits) 23 3. Access Procedure To simplify the mapping, the following procedure is established: 1. The number of mapped objects is set to 0. 2. The parameters first_mapped_object … fourth_mapped_object may be written (The overall length of all objects is not relevant in this time). 3. The number of mapped objects is set to a value between 1 ... 4. The length of all these objects must now not exceed 64 bits. Type of transmission transmission_type und inhibit_time Which event results in sending (transmit PDO) or evaluation (receive PDO) of a message can be determined for each PDO: Value Significance Permitted with 00h – F0h SYNC-Message TPDOs The numerical value specifies how many SYNCMessages are ignored between transmissions before the PDO is RPDOs FEh • sent (T-PDO) or • evaluated (R-PDO). Cyclical TPDOs The transfer PDO is cyclically updated and sent by the motor controller. The time period is set by the object inhibit_time. (RPDOs) Receive PDOs, in contrast, are evaluated immediately after reception. FFh TPDOs Change The transfer PDO is sent when at least 1 bit has changed in the data of the PDO. With inhibit_time, the minimum interval between sending two PDOs can also be established in 100μs steps. The use of all other values is not permitted. Masking transmit_mask_high und transmit_mask_low If "change" is selected as the transmission_type, the TPDO is always sent when at least 1 bit of the TPDO changes. But frequently it is necessary that the TPDO should only be sent when certain bits have changed. Therefore, the TPDO can be equipped with a mask: Only the bits of the TPDO that are set to "1" in the mask are used to evaluate whether the PDO has changed. Since this function is manufacturer-specific, all bits of the masks are set as default value. 24 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure EXAMPLE The following objects should be transmitted in one PDO: Name of the object Index_Subindex Significance statusword 6041h_00h Controller regulation modes_of_operation_display 6061h_00h Operating mode digital_inputs 60FDh_00h Digital inputs The first transmit PDO (TPDO 1) should be used, which should always be sent whenever one of the digital inputs changes, but at a maximum of every 10 ms. As identifier for this PDO, 187h should be used. 1.) Deactivating PDO If the PDO is active, it must first be deactivated. Reading out of the identifier:  40000181h = cob_id_used_by_pdo Setting of bit 31 (deactivate):  cob_id_used_by_pdo = C0000181h Deleting number of objects Set the number of objects to zero in order to be able to change the  number_of_mapped_objects = 0 object mapping. 3.) Setting parameters for objects that are to be mapped The above-listed objects must be combined into a 32 bit value: Index =6041h Subin. = 00h Length = 10h  first_mapped_object = 60410010h Index =6061h Subin. = 00h Length = 08h  second_mapped_object = 60610008h Index =60FDh Subin. = 00h Length = 20h  third_mapped_object = 60FD0020h 2.) 4.) Setting parameters for number of objects The PDO should contain 3 objects  number_of_mapped_objects = 3h 5.) Setting parameters for transmission type The PDO should be sent when changes (to the digital inputs)  transmission_type = FFh are sent. To ensure that only changes to the digital inputs result in  transmit_mask_high = 00FFFF00h transmission, the PDO is masked so  transmit_mask_low = 00000000h that only the 16 bits of the object 60FDh "come through". The PDO should be sent no more  inhibit_time = 64h than every 10 ms (100×100 μs). 6.) Setting identifier parameters The PDO should be sent with identifier 187h. Writing new identifier:  cob_id_used_by_pdo = Activating by deletion of bit 31:  cob_id_used_by_pdo = C0000187h 40000187h Note that parameter setting of the PDOs may generally only be changed when the network status (NMT) is not operational. See also chapter 3.3.3 Festo P.BE-CMMS-CO-SW-EN 1012a 25 3. Access Procedure 3.3.2 Objects for PDO Parameter Setting The motor controllers of the CMMS/CMMD series contain a total of two transmit and two receive PDOs. The individual objects for setting parameters for these PDOs are the same for all TPDOs and all RPDOs in each case. For that reason, only the parameter description of the first TPDO is explicitly listed. The meaning can also be used for the other PDOs, which are listed in table form in the following: Index 1800h Name transmit_pdo_parameter_tpdo1 Object Code RECORD No. of Elements 3 Sub-Index 01h Description cob_id_used_by_pdo_tpdo1 Data Type UINT32 Access rw PDO Mapping no Units - Value Range 181h ... 1FFh, Bit 30 and 31 may be set Default Value C0000181h Sub-Index 02h Description transmission_type_tpdo1 Data Type UINT8 Access rw PDO Mapping no Units - Value Range 0 ... 8Ch, FEh, FFh Default Value FFh Sub-Index 03h Description inhibit_time_tpdo1 Data Type UINT16 Access rw PDO Mapping no Units 100 μs (i.e. 10 = 1ms) Value Range -- Default Value 0 26 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure Index 1A00h Name transmit_pdo_mapping_tpdo1 Object Code RECORD No. of Elements 4 Sub-Index 00h Description number_of_mapped_objects_tpdo1 Data Type UINT8 Access rw PDO Mapping no Units -- Value Range 0 ... 4 Default Value see table Sub-Index 01h Description first_mapped_object_tpdo1 Data Type UINT32 Access rw PDO Mapping no Units -- Value Range -- Default Value see table Sub-Index 02h Description second_mapped_object_tpdo1 Data Type UINT32 Access rw PDO Mapping no Units -- Value Range -- Default Value see table Festo P.BE-CMMS-CO-SW-EN 1012a 27 3. Access Procedure Sub-Index 03h Description third_mapped_object_tpdo1 Data Type UINT32 Access rw PDO Mapping no Units -- Value Range -- Default Value see table Sub-Index 04h Description fourth_mapped_object_tpdo1 Data Type UINT32 Access rw PDO Mapping no Units -- Value Range -- Default Value see table Observe that the object groups transmit_pdo_parameter_xxx and transmit_pdo_mapping_xxx can only be written when the PDO is deactivated (bit 31 in cob_id_used_by_pdo_xxx set) 1. Transmit-PDO 28 Index Comment Type Acc. Default Value 1800h_00h number of entries UINT8 ro 03h 1800h_01h COB-ID used by PDO UINT32 rw C0000181h 1800h_02h transmission type UINT8 rw FFh 1800h_03h inhibit time (100 μs) UINT16 rw 0000h 1A00h_00h number of mapped objects UINT8 rw 01h 1A00h_01h first mapped object UINT32 rw 60410010h 1A00h_02h second mapped object UINT32 rw 00000000h 1A00h_03h third mapped object UINT32 rw 00000000h 1A00h_04h fourth mapped object UINT32 rw 00000000h Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure 2. Transmit-PDO Index Comment Type Acc. Default Value 1801h_00h number of entries UINT8 ro 03h 1801h_01h COB-ID used by PDO UINT32 rw C0000281h 1801h_02h transmission type UINT8 rw FFh 1801h_03h inhibit time (100 μs) UINT16 rw 0000h 1A01h_00h number of mapped objects UINT8 rw 02h 1A01h_01h first mapped object UINT32 rw 60410010h 1A01h_02h second mapped object UINT32 rw 60610008h 1A01h_03h third mapped object UINT32 rw 00000000h 1A01h_04h fourth mapped object UINT32 rw 00000000h Index Comment Type 2014h_00h number of entries UINT8 ro 02h 2014h_01h tpdo_1_transmit_mask_low UINT32 rw FFFFFFFFh 2014h_02h tpdo_1_transmit_mask_high UINT32 rw FFFFFFFFh Index Comment Type 2015h_00h number of entries UINT8 ro 02h 2015h_01h tpdo_2_transmit_mask_low UINT32 rw FFFFFFFFh 2015h_02h tpdo_2_transmit_mask_high UINT32 rw FFFFFFFFh Index Comment Type 1400h_00h number of entries UINT8 ro 02h 1400h_01h COB-ID used by PDO UINT32 rw C0000201h 1400h_02h transmission type UINT8 rw FFh 1600h_00h number of mapped objects UINT8 rw 01h 1600h_01h first mapped object UINT32 rw 60400010h 1600h_02h Second mapped object UINT32 rw 00000000h 1600h_03h third mapped object UINT32 rw 00000000h 1600h_04h fourth mapped object UINT32 rw 00000000h tpdo_1_transmit_mask Acc. Default Value tpdo_2_transmit_mask Acc. Default Value 1. Receive-PDO Festo P.BE-CMMS-CO-SW-EN 1012a Acc. Default Value 29 3. Access Procedure 2. Receive-PDO 3.3.3 Index Comment Type Acc. Default Value 1401h_00h number of entries UINT8 ro 02h 1401h_01h COB-ID used by PDO UINT32 rw C0000301h 1401h_02h transmission type UINT8 rw FFh 1601h_00h number of mapped objects UINT8 rw 02h 1601h_01h first mapped object UINT32 rw 60400010h 1601h_02h Second mapped object UINT32 rw 60600008h 1601h_03h third mapped object UINT32 rw 00000000h 1601h_04h fourth mapped object UINT32 rw 00000000h Activation of PDOs For the motor controller to send or receive PDOs, the following points must be met: - The object number_of_mapped_objects must not equal zero. - In the object cob_id_used_for_pdos, bit 31 must be deleted. - The communication status of the motor controller must be operational (see chapter 3.7 Network Management: NMT Service) For parameters to be set for PDOs, the following points must be met: - The communication status of the motor controller must not be operational. 3.4 SYNC-Message Several devices of a system can be synchronised with each other. To do this, one of the devices (usually the higher-order controller) periodically sends out synchronisation messages. All connected controllers receive these messages and use them for treatment of the PDOs (see chapter 0). Identifier: 80h 80h 0 Data length The identifier on which the motor controller receives the SYNC message is set permanently to 80h. The identifier can be read via the object cob_id_sync. 30 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure Index 1005h Name cob_id_sync Object Code VAR Data Type UINT32 Access rw PDO Mapping no Units -- Value Range 80000080h, 00000080h Default Value 00000080h 3.5 EMERGENCY-Message The motor controller monitors the function of its major assemblies. These include the power supply, output stage, angle encoder evaluation and technology connections. In addition, the motor (temperature, angle encoder) and limit switch are checked. Incorrect parameter setting can also result in error messages (division by zero, etc.). When an error occurs, the error number is shown in the motor controller's display. If several error messages occur simultaneously, the message with the highest priority (lowest number) is always shown in the display. 3.5.1 Structure of the EMERGENCY-Message When an error occurs, the motor controller transmits an EMERGENCY message. The identifier of this message is put together from the identifier 80h and node number of the affected motor controller. The EMERGENCY message consists of eight data bytes, whereby the first two bytes contain an error_code, which is listed in the following table. An additional error code is in the third byte (object 1001h). The remaining five bytes contain zeros. Identifier: 80h + error_code node number 81h 8 error_register (Obj. 1001h) E0 E1 R0 0 0 0 0 0 Data length Festo P.BE-CMMS-CO-SW-EN 1012a 31 3. Access Procedure The following error codes can occur: Error message error code (hex) Display Message Causes Measures Error reaction 1) 2311 E311 I²t error controller (I²t at 100 %) I²t monitoring of the controller has been triggered. Check power dimensioning of drive package. PS off 2) 2312 E310 I²t error motor (I²t at 100 %) I²t monitoring of the controller has been triggered. Motor/mechanics blocked or hard to move? Warn 2) 2320 E060 Overload current, intermediate circuit / output stage Motor defective? Short-circuit in cable? Check motor, cable and controller. PS off I²t at 80 % Common error: Motor/mechanics blocked or hard to move? Warn 2) PS off 2380 E190 Output stage defective? 80 % of the maximum I²t workload from the controller or motor has been achieved. 3210 3220 E070 E020 Overvoltage in the intermediate circuit Voltage energy recovery through motor application. Braking of larges masses. Check the connection to the braking resistor. Undervoltage intermediate circuit Intermediate voltage drops below the parametrised threshold. Quick discharge due to switched-off mains supply. Check design (application). PS off 2) Check power supply. Couple intermediate circuits if technically permissible. Check intermediate circuit voltage (measure). Check undervoltage monitor (threshold value). 3280 E320 Only CMMS-AS/ CMMD-AS: Intermediate circuit could not be charged (UZK < 150V) Check mains voltage. Error, IC pre-charge 32 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure Error message error code (hex) Display Message Causes Measures 3285 E328 Only CMMS-AS/ CMMD-AS: Power failure with granted controller enable Check mains voltage. Error reaction 1) Error, controller enable without IC 4210 E040 Excess/low temperature of power electronics Device is overheated. Device overloaded. Temperature display plausible? Check installation conditions (cooling: via the housing surface, the integrated heat sink and back wall) PS off 2) 4280 E181 Output stage temperature 5 °C below maximum CMMS-ST: The output stage temperature is greater than 80 °C Check installation conditions (cooling: via the housing surface, the integrated heat sink and back wall) PS off 2) Check parametrisation (current regulator, current limit values) If the error remains even when the sensor is bridged: Device defective. PS off CMMS-AS/CMMD-AS: The output stage temperature is greater than 90 °C 4310 E030 Temperature monitoring, motor Motor too hot? Suitable sensor? Broken cable? Sensor defective? 4310 E031 Temperature monitoring, motor Error, dig. motor temperature sensor. Check parametrisation (current regulator, current limit values) If the error remains even when the sensor is bridged: Device defective. PS off 2) 4380 E180 Motor temperature 5 °C below maximum The motor temperature is less than 5 °C under the parametrised maximum temperature Check parameters (current regulator, current limits) Ignore 2) Festo P.BE-CMMS-CO-SW-EN 1012a 33 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 5114 E050 5 V supply Monitoring of the The fault cannot be rectified PS off fault internal power supply automatically. has recognised Send motor controller to the undervoltage. manufacturer. Either an internal defect or an overload 5115 E051 Error, 24V 16V < U24V < 32V = Separate device from the power supply OK, otherwise NOK entire peripheral equipment and check whether the error is (out of range) 5116 E052 PS off Error, 12 V 11V < U12V < 13V = still present after reset. If yes, electronic OK, otherwise NOK there is an internal defect and PS off a repair by the manufacturer is power supply necessary 5210 E210 Error, offset The controller If the error occurs repeatedly, current performs offset the hardware is defective. measurement compensation of the Send motor controller to the current measurement. manufacturer. PS off Tolerances that are too large result in an error. 5581 E261 Checksum Checksum error of a Load factory settings. If the error parameter set error remains, the hardware PS off may be defective. 6081 E251 Hardware Motor controller and fault firmware are not Update the firmware. PS off PS off compatible 6180 E010 Stack Incorrect firmware? Load an enabled firmware. overflow Sporadic high Reduce calculation load. calculation load due to cycle time that is too short and special Contact the technical support team. calculation-intensive processes (save parameter set, etc.) 6183 E163 Unexpected The software has In case of repetition, load status / taken an unexpected firmware again. If the error programming status. occurs repeatedly, the error 34 PS off hardware is defective. Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 6187 E162 Initialization error Error in initializing the default parameters. In case of repetition, load firmware again. If the error occurs repeatedly, the hardware is defective. PS off 6191 E429 Error in position record Common error: Check parametrisation and sequence control, correct if necessary. PS off 1. An attempt is being made to start an unknown or deactivated position record. 2. The set acceleration is too small for the permissible maximum speed. (Danger of a calculation overflow in the trajectory calculation) 6192 E419 Error, jump destination route program Jump to a position record outside the permitted range Check parametrisation PS off 6193 E418 Error, record continuation, unknown command Unknown command found during record continuation Check parametrisation PS off 6195 E702 General arithmetic error The FHPP factor group cannot be calculated correctly. Check the factor group PS off 6197 E149 Error, motor identification Error in automatic determination of the motor parameters. Ensure sufficient intermediate circuit voltage. PS off Encoder cable connected to the right motor? Motor blocked, e.g. holding brake does not release? Festo P.BE-CMMS-CO-SW-EN 1012a 35 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 6199 E351 Time out for quick stop The parametrised time for quick stop has been exceeded Check parametrisation PS off 6380 E703 Operating mode error Unallowed change of the operating mode. Check your application. It may be that not every change is permissible. PS off 2) - Test with another encoder PS off For example, torque control for CMMS-ST in the controlled mode or parametrisation mode under FHPP, change of the operating mode with enabled output stage. 7380 E082 Encoder supply fault 4V < U_Encoder < 6V = OK, otherwise NOK - Test with another encoder cable - Test with another controller 7386 E086 Only CMMS-AS/ CMMD-AS: SINCOSRS485 communication error Communication to serial angle encoders faulty (EnDat−encoder, HIPERFACE−encoder, BiSS−encoder). Angle encoder connected? Angle encoder cable defective? Check configuration of angle encoder interface: procedure corresponding to a) to c): PS off a) Serial encoder parametrised but not connected? Incorrect serial protocol selected? b) Encoder signals faulty? c) Test with another encoder. Angle encoder defective? 36 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 7388 E088 Only CMMS-AS/ CMMD-AS: Alarm bit set in the EnDat encoder. Possible causes: PS off Internal angle encoder error Encoder- or manufacturerspecific, e.g. a declining illumination intensity for optical encoders or excessive speed. If the error occurs permanently: Test with another (error-free) encoder (also replace the connecting cable). Encoder presumably permanently defective. 7500 E220 PROFIBUS faulty initialization Extension module defective? Please contact Technical Support. PS off 2) 7500 E222 PROFIBUS Communication fault Faulty initialization of the Profibus technology module. Technology module defective? Check slave address set PS off 2) RS232 communication error Overflow during reception of RS232 commands Check wiring. 7510 E790 Check bus termination Check wiring PS off 2) Check of the transmitted data. 7582 E642 DeviceNet communication error Input buffer overflowed Too many messages received within a short period. Reduce the scan rate. PS off 2) 7582 E643 DeviceNet communication error Transmission buffer overflowed Not sufficient free space on the CAN bus for sending messages. Increase the baud rate, reduce the number of nodes or reduce the scan rate. PS off 2) Festo P.BE-CMMS-CO-SW-EN 1012a 37 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 7582 E644 DeviceNet communication error IO-message could not be sent Check that the network is connected correctly and has no faults. PS off 2) 7582 E645 DeviceNet communication error Bus off Check that the network is connected correctly and has no faults. PS off 2) 7582 E646 DeviceNet communication error Overflow in the CAN controller Increase the baud rate, reduce the number of nodes or reduce the scan rate. PS off 2) 7582 E651 DeviceNet communication error Timeout of the I/O connection No I/O message received within the expected time. Please contact Technical Support. PS off 2) 7583 E651 DeviceNet initialisation error Node number on hand twice Check the configuration PS off 2) 7584 E641 DeviceNet general error No 24 V bus voltage In addition to the motor controller, connect the DeviceNet module to 24 VDC. PS off 2) 7584 E650 DeviceNet general error Common error: PS off 2) Communication is activated although no technology module is plugged in. The DeviceNet technology module is attempting to read unknown CO. Unknown DeviceNet error. 7680 E290 SD card not available Tried to access missing SD card. Check: Warn 2) - whether SD card is plugged in correctly - whether SD card is formatted - whether compatible SD card is plugged in. 38 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 7681 E291 SD card initialization error Error on initialization / communication not possible Plug card back in. PS off 2) Check card (file format FAT). If necessary, format card. 7682 E292 SD card parameter set error Checksum wrong / File not available / File format wrong / Error saving the parameter file on the SD card Check content (data) of the SD card. PS off 2) 8000 E052 Error, driver power supply Error in the plausibility check of the driver power supply (reliable halt) Separate device from the entire peripheral equipment and check if the fault is still present after reset. If yes, there is an internal defect and a repair by the manufacturer is required. PS off 8000 E450 Error, driver power supply The driver supply is still active despite the "Safe Halt". The internal logic might malfunction due to highfrequency switching operations at the input for the safe halt. PS off Check activation; the error must not recur. If the error occurs repeatedly when the safe halt is activated: check firmware (released version?). If all above possibilities have been excluded, the hardware of the motor controller is defective. Festo P.BE-CMMS-CO-SW-EN 1012a 39 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 8000 E451 Error, driver power supply The driver supply is activated again, even though the "Safe Halt" is still requested. The internal logic might malfunction due to highfrequency switching operations at the input for the safe halt. PS off Check activation; the error must not recur. If the error occurs repeatedly when the safe halt is activated: check firmware (released version?). If all above possibilities have been excluded, the hardware of the motor controller is defective. 8000 E452 Error, driver power supply The driver supply does not go on again, even though the "Safe Halt" signal is no longer active. If the error occurs repeatedly when safe halt is being deactivated, the hardware of the motor controller is defective. PS off 8087 E453 Error plausibility DIN4 (output stage enable) Error in the plausibility check of the output stage enable Please contact Technical Support. PS off 8100 E760 Only CMMD-AS: Common error: Check wiring. Check whether the screening of the motor cables is correctly set up (EMC problem). If the SSIO communication is not necessarily needed (e.g. no fieldbus module is used, and the axes are controlled separately over I/Os, so this error may be ignored.) PS off 2) Error SSIO communication (axis 1 – axis 2) 40 1. Checksum error during transfer of the SSIO protocol 2. Timeout during transmission Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 8100 E761 Only CMMD-AS: SSIO partner has error 760 The error is triggered when the other axis has reported an SSIO communication error. For example, if axis 2 reports the error 76-0, the axis 1 of the error 76-1 is triggered. Measures and description of the error response as with error 76-0. PS off 2) Common error: Check wiring: PS off 2) 1. Error when sending a message (e.g. no bus connected) Cable specifications complied with, broken cable, maximum cable length exceeded, terminating resistors correct, cable screening earthed, all signals displayed? Replace device on a test basis. If another device works correctly with the same wiring, send device to the manufacturer for testing. Check start sequence of the application. Error SSIO communication (axis 2) 8181 E122 CAN communication error 2. Timeout during reception of the SYNC messages in the interpolated position mode 8488 E424 Homing required No positioning possible without homing. Homing run must be carried out Reset optional parametrisation "Homing required". Warn 2) Carry out a new homing run after acknowledgement of an angle encoder error. 8611 E170 Contouring error limit value exceeded Comparison threshold for the limit value of the contouring error exceeded. Enlarge error window. Acceleration parameter too large. PS off 2) 8612 E400 Error SW limit switch reached Negative SW limit switch reached. Check target data. Warn 2) Error SW limit switch reached Positive SW limit switch reached. Check target data. 8612 E401 Festo P.BE-CMMS-CO-SW-EN 1012a Check positioning area. Warn 2) Check positioning area. 41 3. Access Procedure Error message error code (hex) Display Message Causes Measures Error reaction 1) 8612 E402 Error SW limit switch reached Target position lies behind the negative SW limit switch Check target data. Warn 2) Error SW limit switch reached Target position lies behind the positive SW limit switch. Check target data. 8612 E403 Check positioning area. Warn 2) Check positioning area. 8612 E430 Fault in limit switch Negative hardware limit switch reached. Check parameters, wiring and proximity switches. Warn 2) 8612 E431 Fault in limit switch Positive hardware limit switch reached. Check parameters, wiring and proximity switches. Warn 2) 8612 E439 Fault in limit switch Both hardware limit switches are active simultaneously. Check parameters, wiring and proximity switches. Warn 2) 8681 E421 Positioning: Error in precalculation The positioning target cannot be reached through the positioning or edge condition options. Check parametrisation of the position records in question. PS off 2) 8A81 E111 Error during homing Homing was interrupted, e.g. by withdrawal of controller release or through limit switches. Check homing sequence. 1) 2) 42 PS off Switch off power section Qstop Fast stop Warn Warning Ignore Ignore Check arrangement of the switches. Possibly lock stop input during homing, if undesirable. Changeable with FCT Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure 3.5.2 Description of the Objects Object 1001h: error_register The error type defined in the CiA standard 301 can be read via the object error_register. Sub-Index 00h Description error_register Data Type UINT8 Access ro PDO Mapping yes Units -- Value Range 0 ... FFh Default Value 0 bit Type of error 0 generic errror 1 current 2 voltage 3 temperature 4 communication error 5 device profile specific 6 reserved 7 manufacturer specific Object 1003h: pre_defined_error_field The respective error_code of the error messages is also stored in a four-stage error memory. This is structured like a shift register so that the last error occurring is stored in the object 1003h_01h (standard_error_field_0). Through read access on the object 1003h_00h (pre_defined_error_field), it can be determined how many error messages are currently stored in the error memory. The error memory is cleared by writing the value 00h into the object 1003h_00h (pre_defined_error_field). To be able to reactivate the output stage of the motor controller after an error, an error acknowledgement (see chapter 5.1: Change of State 15) must also be performed. Festo P.BE-CMMS-CO-SW-EN 1012a 43 3. Access Procedure Index 1003h Name pre_defined_error_field Object Code ARRAY No. of Elements 4 Data Type UINT32 Sub-Index 01h Description standard_error_field_0 Access ro PDO Mapping no Units -- Value Range -- Default Value -- Sub-Index 02h Description standard_error_field_1 Access ro PDO Mapping no Units -- Value Range -- Default Value -- Sub-Index 03h Description standard_error_field_2 Access ro PDO Mapping no Units -- Value Range -- Default Value -- Sub-Index 04h Description standard_error_field_3 Access ro PDO Mapping no Units -- Value Range -- Default Value -- 44 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure Object 1014h_00h: cob-id_emergency_object Sub-Index 00h Description cob-id_emergency_object Data Type UINT32 Access rw PDO Mapping no Units -- Value Range -- Default Value 80h + Node-ID 3.6 Heartbeat / Bootup (Error Control Protocol) 3.6.1 Structure of the Heartbeat Message The so-called Heartbeat protocol is implemented to monitor communication between slave (drive) and master: Here, the drive sends messages cyclically to the master. The master can check whether these messages occur cyclically and introduce appropriate measures if they do not. The Heartbeat telegram is transmitted with the identifier 700h + node number. It contains only 1 byte of user data, the NMT status of the motor controller (see chapter 3.7: Network Management: NMT Service). Identifier: 700h + NMT status node number 701h 1 N Data length N Significance 04h Stopped 05h Operational 7Fh Pre-Operational Festo P.BE-CMMS-CO-SW-EN 1012a 45 3. Access Procedure 3.6.2 Structure of the Bootup Message After the power supply is switched on or after a reset, the motor controller reports via a Bootup message that the initialisation phase is ended. The motor controller is then in the NMT status preoperational (see chapter 3.7: Network Management: NMT Service) Identifier: 700h + Bootup message identifier node number 701h 1 0 Data length The Bootup message is structured almost identically to the Heartbeat message. Only a zero is sent instead of the NMT status. 3.6.3 Description of the Objects Object 1017h: producer_heartbeat_time The time between two Heartbeat telegrams can be established via the object producer_heartbeat_time. Index 1017h Name producer_heartbeat_time Object Code VAR Data Type UINT16 Access rw PDO Mapping no Units ms Value Range 0 ... 65536 Default Value 0 The producer_heartbeat_time can be stored in the parameter record. If the motor controller starts with producer_heartbeat_time not equal to zero, the bootup message is the first heartbeat. The motor controller can only be used as a so-called heartbeat producer. The object 1016h (consumer_heartbeat_time) is therefore implemented only for compatibility reasons and always returns 0. 46 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure 3.7 Network Management (NMT Service) All CANopen devices can be triggered via the Network Management. The identifier with the highest priority (000h) is reserved for this. By means of NMT, commands can be sent to one or all controllers. Each command consists of two bytes, whereby the first byte contains the command specifier (cs) and the second byte the node ID (ni) of the addressed controller. Through the node ID zero, all nodes in the network can be addressed simultaneously. It is thus possible, for example, that a reset is triggered in all devices simultaneously. The controller does not acknowledge the NMT commands. Successful completion can only be determined indirectly (e.g. through the switch-on message after a reset). Structure of the NMT Message: Identifier: 000 Command specifier h Node ID 000h 2 CS NI Data length For the NMT status of the CANopen node, statuses are established in a status diagram. Changes in statuses can be triggered via the CS byte in the NMT message. These are largely oriented on the target status. Initialisation Reset Application 15 Reset Communication 16 1 Initialising 2 14 3 5 13 7 Stopped (04h) 6 12 11 Pre-Operational (7Fh) 4 10 8 Operational (05h) 9 Fig. 3.2 NMT state machine Festo P.BE-CMMS-CO-SW-EN 1012a 47 3. Access Procedure The NMT status of the motor controller can be influenced via the following commands: CS Significance Transitions Target status 01h Start Remote Node 3, 6 Operational (05h) 02h Stop Remote Node 5, 8 Stopped (04h) 80h Enter Pre-Operational 4, 7 Pre-Operational (7Fh) 81h Reset Application 12, 13, 14 Reset Application *1) 82h Reset Communication 9, 10, 11 Reset Communication *1) *1) The final target status is pre-operational (7Fh), since the transitions 15, 16 and 2 are automatically performed by the motor controller. All other status transitions are performed automatically by the motor controller, e.g. because the initialisation is completed. In the NI parameter, the node number of the motor controller must be specified or zero if all nodes in the network are to be addressed (broadcast). Depending on the NMT status, certain communication objects cannot be used: So, for example, it is absolutely necessary to place the NMT status to Operational, so that the motor controller sends PDOs. Name Significance Reset Application No Communication. All CAN objects are reset to their reset values (application parameter set) Reset Communication No communication The CAN controller is newly initialised. SDO PDO NMT - - - - - - Initialising Status after hardware reset. Resetting of the CAN node, Sending of the bootup message - - - Pre-Operational Communication via SDOs possible PDOs not active (no sending / evaluating) X - X Operational Communication via SDOs possible All PDOs active (sending / evaluating) X X X Stopped No communication except for heartbeating - - X NMT telegrams must not be sent in a burst (immediately one after another)! At least twice the position controller cycle time must lie between two consecutive NMT messages on the bus (also for different nodes!) for the motor controller to process the NMT messages correctly. The communication status must be set to operational for the motor controller to transmit and receive PDOs. 48 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure 3.8 Nodeguarding (Error Control Protocol) 3.8.1 Overview The so-called Nodeguarding protocol can also be used to monitor communication between slave (drive) and master. In contrast to the Heartbeat protocol, master and slave monitor each other: The master cyclically asks the drive about its NMT status. In every response of the controller, a certain bit is inverted (toggled). If these responses are not made or the controller always responds with the same toggle bit, the master can react accordingly. Likewise, the drive monitors the regular arrival of the master's nodeguarding requests: If messages are not received for a certain time period, the controller triggers error 12-4. Since both heartbeat and nodeguarding telegrams are sent with the identifier 700h + node number, both protocols can be active at the same time. If both protocols are activated simultaneously, only the heartbeat protocol is active. 3.8.2 Structure of the Nodeguarding Messages The master's request must be sent as a so-called remote frame with the identifier 700h + node number. In the case of a remote frame, a special bit is also set in the telegram, the remote bit. Remote frames have no data. Identifier:700 + h node number 701h R 0 Remote bit (Remote frames have no data) The response of the controller is built up analogously to the heartbeat message. It contains only 1 byte of user data, the toggle bit and the NMT status of the controller. Identifier:700 + Toggle bit / NMT status h node number 701h 1 T/N Data length The first data byte (T/N) is constructed in the following way: bit Value Name Significance 7 80h toggle_bit Changes with every telegram 0 ... 6 7Fh nmt_state 04h Stopped 05h Operational 7Fh Pre-Operational Festo P.BE-CMMS-CO-SW-EN 1012a 49 3. Access Procedure The monitoring time for the master's requests can be parametrised. Monitoring begins with the first received remote request of the master. From this time on, the remote requests must arrive before the monitoring time has passed, since otherwise error 12-4 is triggered. The toggle bit is reset through the NMT command Reset Communication. It is therefore deleted in the first response of the controller. 3.8.3 Description of the Objects Object 100Ch: guard_time To activate the nodeguarding monitoring, the maximum time between two remote requests of the master is parametrised. This time is established in the controller from the product of guard_time (100Ch) and life_time_factor (100Dh). It is therefore recommended to write the life_time_factor with 1 and then specify the time directly via the guard_time in milliseconds. Index 100Ch Name guard_time Object Code VAR Data Type UINT16 Access rw PDO Mapping no Units ms Value Range 0 ... 65535 Default Value 0 Object 100Dh: life_time_factor The life_time_factor should be written with 1 in order to specify the guard_time directly. Index 100Dh Name life_time_factor Object Code VAR Data Type UINT8 Access rw PDO Mapping no Units -- Value Range 0, 1 Default Value 0 50 Festo P.BE-CMMS-CO-SW-EN 1012a 3. Access Procedure 3.9 Table of Identifiers The following table gives an overview of the identifiers used: Object type Identifier (hexadecimal) SDO (Host an Controller) 600h+node number SDO (Controller an Host) 580h+node number TPDO1 181h Standard values. TPDO2 281h Can be changed if needed. RPDO1 201h RPDO2 301h SYNC 080h EMCY 080h +node number HEARTBEAT 700h+node number BOOTUP 700h+node number NMT 000h Festo P.BE-CMMS-CO-SW-EN 1012a Comment 51 4. Setting Parameters 4. Setting Parameters Before the motor controller can carry out the desired task (torque regulation, speed adjustment, positioning), numerous parameters of the motor controller must be adapted to the motor used and the specific application. The sequence in the subsequent chapters should be followed thereby. After setting of the parameters, device control and use of the various operating modes are explained. The 7-segment display of the motor controller shows an "A" (Attention) if the motor controller has not been parametrised appropriately yet. Besides the parameters described in depth here, the object directory of the motor controller contains other parameters that have to be implemented in accordance with CANopen. But they normally do not contain any information that can sensibly be used in designing an application with the CMMS/CMMD family. If needed, specification of such objects can be read in [1] and [2] (see page 12). 4.1 Load and Save Parameter Sets 4.1.1 Overview The motor controller has three parameter sets: - Current parameter set This parameter set is located in the random access memory (RAM) of the motor controller. It can be read and written with the commissioning software FCT. When the motor controller is switched on, the application parameter set is copied into the current parameter set. - Default parameter set This is the parameter set of the motor controller provided standard by the manufacturer and is unchangeable. Through a write process in the CANopen object 1011h_01h (restore_all_default_parameters) the default parameter set can be copied into the current parameter set. This copying process is only possible when the output stage is switched off. - Application parameter set The current parameter set can be stored in the nonvolatile flash memory. The saving process can be triggered with a write access to the CANopen object 1010h_01h (save_all_parameters). When the motor controller is switched on, the application parameter set is automatically copied into the current parameter set. The following diagram illustrates the connections between the individual parameter sets. 52 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Default parameter set Application parameter set Switching on of the controller CANopen object 1011 CANopen object 1010 Current parameter set Fig. 4.1 Connections between parameter sets Warning Before the output stage is switched on for the first time, make sure the controller really contains the parameters you want. An incorrectly parametrised controller can turn out of control and cause personal injury or property damage. 4.1.2 Description of the Objects Object 1011h: restore_default_parameters Index 1011h Name restore_parameters Object Code ARRAY No. of Elements 1 Data Type UINT32 Sub-Index 01h Description restore_all_default_parameters Access rw PDO Mapping no Units -- Value Range 64616F6Ch ("load") Default Value 1 (read access) Festo P.BE-CMMS-CO-SW-EN 1012a 53 4. Setting Parameters The object 1011h_01h (restore_all_default_parameters) makes it possible to put the current parameter set into a defined state. To achieve this, the default parameter set is copied into the current parameter set. The copying process is triggered by a write access to this object, whereby the string "load" must be transferred as a data record in hexadecimal form. This command is only carried out with a deactivated output stage. Otherwise, the SDO error "Data cannot be transmitted or stored, since the motor controller for this is not in the correct state" is generated. If the incorrect identifier is sent, the error "Data cannot be transmitted or stored" is generated. If the object is accessed by reading, a 1 is returned to show that resetting to default values is supported. The CAN communication parameters (node no., baud rate and operating mode) remain unchanged. Object 1010h: store_parameters Index 1010h Name store_parameters Object Code ARRAY No. of Elements 1 Data Type UINT32 Sub-Index 01h Description save_all_parameters Access rw PDO Mapping no Units -- Value Range 65766173h ("save") Default Value 1 If the default parameter set should also be taken over into the application parameter set, the object 1010h_01h (save_all_parameters) must also be called up. 54 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters 4.2 Conversion Factors (Factor Group) 4.2.1 Overview Motor controllers are used in a wide variety of applications: As direct drive, with follow-on gear, for linear drive, etc. To permit easy parameter setting, the motor controller can be parametrised with the help of the factor group so that the user can specify or read out all variables, such as speed, directly in the desired units at the output (e.g. with a linear axis position value in millimetres and speeds in millimetres per second). The motor controller then uses the factor group to calculate the entries in its internal units of measurement. For each physical variable, (position, speed and acceleration), there is a conversion factor available to adapt the user units to the own application. The units set through the factor group are generally designated position_units, speed_units or acceleration_units. The following sketch illustrates the function of the factor group: Fig. 4.2 Factor group All parameters are stored in the motor controller in its internal units and only converted with the help of the factor group when being written in or read out. For that reason, the factor group should be set before the first parameter setting and not changed during parameter setting. The factor group is set to the following units by default: Size Designation Unit of measure Explanation Length position_units Increments 65536 increments per revolution -1 Speed speed_units min Acceleration acceleration_units (min-1)/s Festo P.BE-CMMS-CO-SW-EN 1012a Revolutions per minute Rotational speed increase per second 55 4. Setting Parameters 4.2.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 6093h ARRAY position_factor UINT32 rw 6094h ARRAY velocity_encoder_ factor UINT32 rw 6097h ARRAY acceleration_factor UINT32 rw 607Eh VAR Polarity UINT8 rw Object 6093h: position_factor The object position_factor converts all length units of the application from position_units into the internal unit increments (65536 increments equal 1 revolution). It consists of numerator and denominator. Fig. 4.3 Overview: Factor group Index 6093h Name position_factor Object Code ARRAY No. of Elements 2 Data Type UINT32 56 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Sub-Index 01h Description Numerator Access rw PDO Mapping yes Units -- Value Range -- Default Value 1 Sub-Index 02h Description Divisor Access rw PDO Mapping yes Units -- Value Range -- Default Value 1 The following parameters are involved in the calculation formula of the position_factor: gear_ratio Gear ratio between revolutions at the drive-in (RIN) and revolutions at the drive-out (ROUT) feed_constant Ratio between revolutions at the drive-out (ROUT) and movement in position_units (e.g. 1 rev. = 360 degrees) The position_factors is calculated using the following formula: position_f actor = numerator gear_ratio ⋅ 65536 = divisor feed_constant The position_factor must be written to the motor controller separated into numerators and denominators. This can make it necessary to bring the fraction up to whole integers by expanding it accordingly. Festo P.BE-CMMS-CO-SW-EN 1012a 57 4. Setting Parameters EXAMPLE First, the desired unit (column 1) and the desired decimal positions (DP) must be determined along with the gear factor and, if applicable, the feed constant of the application. This feed constant is then depicted in the desired position units (column 2). Finally, all values can be placed in the equation and the fraction calculated: 1.) 2.) 3.) 4.) Desired unit at the drive-out (position_units) feed_constant: How much position_units are 1 revolution (ROUT) Gear Ratio (gear_ratio): revsIN per revsOUT Insert values into equation 1. 2. 3. 4. 1/1 1U Ink ⋅ 65536 1 Ink 1U U = 65536 Ink 1 Ink 1U 1/1 (° /10) Ink 1U ⋅ 65536 65536 Ink U 1U = ° 3600 °10 3600 10 1U 1/1 Rev., 2 DP 1 ROUT = 1U Ink ⋅ 65536 65536 Ink 1U U = 1 00 U 100 100 U 100 1U 1/100 Rev. 100 R/100 2/3 Ink 2U ⋅ 65536 131072 Ink U 3U = 100 U 100 300 U 100 1U 4/5 4U Ink ⋅ 65536 2621440 Ink 5U U = 31575 mm10 631.5 mm10 1U Increments, 0 DP 1 ROUT = 65536 Inc inc. Degree, 1 DP 1/10 Degree ( revs 1 ROUT = 3600 ° /10 /100 ) mm, 1 DP 63.15 1/10 mm 1 ROUT = (mm/10) 631.5 58 mm mm /R /10  RESULT Abbreviated num: 1 div: 1 num: 4096 div: 225 num: 16384 div: 25 num: 32768 div: 75 num: 524288 div: 6315 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters 6094h: velocity_encoder_factor The object velocity_encoder_factor converts all speed values of the application from speed_units into the internal unit revolutions per 4096 minutes. It consists of numerator and denominator. Index 6094h Name velocity_encoder_factor Object Code ARRAY No. of Elements 2 Data Type UINT32 Sub-Index 01h Description Numerator Access rw PDO Mapping yes Units -- Value Range -- Default Value 1 Sub-Index 02h Description Divisor Access rw PDO Mapping yes Units -- Value Range -- Default Value 1 Festo P.BE-CMMS-CO-SW-EN 1012a 59 4. Setting Parameters Calculation of the velocity_encoder_factor consists in principle of two parts: a conversion factor from internal length units into position_units, and a conversion factor from internal time units into user-defined time units (e.g. from seconds into minutes). The first part corresponds to the calculation of the position_factor; for the second part, an additional factor is added to the calculation: time_factor_v Ratio between internal time unit and user-defined time unit. (e.g. 1 min = 1/4096 4096 min) gear_ratio Gear ratio between revolutions at the drive-in (RIN) and revolutions at the drive-out (ROUT) feed_constant Ratio between revolutions at the drive-out (ROUT) and movement in position_units (e.g. 1 rev. = 360 degrees) The calculation of the velocity_encoder_factor uses the following equation: velocity_e ncoder_fac tor = numerator gear_ratio ⋅ time_facto r_v = divisor feed_const ant Like the position_factor, the velocity_encoder_factor also has to be written to the motor controller separated into numerators and denominators. This can make it necessary to bring the fraction up to whole integers by expanding it accordingly. 60 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters EXAMPLE First, the desired unit (column 1) and the desired decimal positions (DP) must be determined along with the gear factor and, if applicable, the feed constant of the application. This feed constant is then depicted in the desired position units (column 2). Then the desired time unit is converted into the time unit of the motor controller (column 3). Finally, all values can be placed in the equation and the fraction calculated: 1.) 2.) 3.) 4.) 5.) Desired unit at the drive-out (speed_units) feed_constant: How much position_units are 1 revolution (ROUT)? time_factor_v: Requested time unit per internal time unit Gear factor (gear_ratio) RIN per ROUT Insert values into equation 1. 2. /min 65536 lnk R (R/100 1 ROUT = /min min R 100 /100 min 1 3600 /10 60 mm /s (mm/10s) = 1/1 mm /R  1 1 s 1 min = 1 ROUT = 631.5 mm /10 60 1 min Festo P.BE-CMMS-CO-SW-EN 1012a 1U 1U 60 ⋅ ⋅ 1U 1U 3600 ° 10 1U = 2 300 1U 4 U 60 ⋅ ⋅ 1U 5 U 4/5 631.5 mm 10 1U 60 = 3600 ° 10s = 2400 31575 s n 0 i 1 m m m U 63.15 1U 2U ⋅ ⋅ 1U 3U 2/3 100 U 100 1U n i m 1 1s 1/10 1 s ° (° /10s) mm/s 1 DP 1 1 ) 1 ROUT = /s = n i m U ° 1 min 1 1 = n i m 1 1s ° /s 1 DP 1 min 1U 1U ⋅ ⋅ 1U 1U 1/1 1U 1U n i n m i 0 m 0 U U1 R 1/100 1 min = n i n i m m 1 1 R/min 2 DP 1 1 RESULT Abbreviated 5. n n i i m m U U 1 ROUT = 1/100 1/10 1 4. n i n i m m 1 1 R/min 0 DP 3. num: 1 div: 1 num: 1 div: 150 num: 1 div: 60 num: 32 div: 421 61 4. Setting Parameters Object 6097h: acceleration_factor The object acceleration_factor converts all acceleration values of the application from acceleration_units into the internal unit Revolutions per minute per 256 seconds. It consists of numerator and denominator. Index 6097h Name acceleration_factor Object Code ARRAY No. of Elements 2 Data Type UINT32 Sub-Index 01h Description Numerator Access rw PDO Mapping yes Units -- Value Range -- Default Value 1 Sub-Index 02h Description Divisor Access rw PDO Mapping yes Units -- Value Range -- Default Value 1 62 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Calculation of the acceleration_factor consists of two parts: a conversion factor from internal length units into position_units, and a conversion factor from internal time units squared into user-defined time units squared (e.g. from seconds2 into minutes2). The first part corresponds to the calculation of the position_factor; for the second part, an additional factor is added: time_factor_a Ratio between internal times units squared and user-defined time unit squared (e.g. 1 min2 = 1 min⋅1 min = 60 s ⋅1 min = 60/256 256 min ⋅s) gear_ratio Gear ratio between revolutions at the drive-in (RIN) and revolutions at the drive-out (ROUT) feed_constant Ratio between revolutions at the drive-out (ROUT) and movement in position_units (e.g. 1 rev. = 360 degrees) The acceleration_factors is calculated using the following formula: accelerati on_factor = numerator gear_ratio ⋅ time_facto r_a = divisor feed_const ant The acceleration_factor is also written into the motor controller separated by numerator and denominator, so it may have to be expanded. Festo P.BE-CMMS-CO-SW-EN 1012a 63 4. Setting Parameters EXAMPLE First, the desired unit (column 1) and the desired decimal positions (DP) must be determined along with the gear factor and, if applicable, the feed constant of the application. This feed constant is then depicted in the desired position units (column 2). Then the desired time unit2 is converted into the time unit2 of the motor controller (column 3). Finally, all values can be placed in the equation and the fraction calculated: 1.) 2.) 3.) 4.) 5.) Desired unit at the drive-out (acceleration_units) feed_constant: How much position_units are 1 revolution (ROUT)? time_factor_a: Desired time unit2 per internal time unit2 Gear factor (gear_ratio) RIN per ROUT Insert values into equation 1. 2. 256 = 60 3600 ° /10 1 = min ⋅ s ° 1 ( /10s²) 1/100 R (R/100 min²) /min² mm num: 64 div: 15 2 512 18000 = num: 32 div: 1125 num: 8192 div: 421 min 256 ⋅ s = 1 min ⋅ s /10 = 1 60·256 64 ° 4 U 60 ⋅ 256 ⋅ 5U 1 2 4/5 631.5 mm10 1U ⋅ = 122880 6315 2 s 0 1 631.5 60 ⋅ m m ( /10s²) 1 ROUT =  15360 3600 s 6 5 2 n i Um /s² /R ⋅ s mm mm mm 2 U 256 ⋅ 3 U 60 2/3 100 U 100 1U 1 1/10 63.15 1 s2 = s n i m 6 5 2 1 mm/s² 1 DP = 1 1 1 256 ⋅ s 1 min s 256 60 256 div: = min2 1 60 100 R/100 ⋅ 2 n i m s 0 6 0 5 2 U1 n i Um 1 ROUT = 1U 60 ⋅ 256 ⋅ 1U 1 s2 1/1 3600 °10 1U s n i m n i 6 m 5 2 1 1 R/min² 2 DP 1 num: min 60·256 1 1 ⋅ 2 s 0 1 /s² 1 s2 256 s 6 5 2 n i Um ° 256 ⋅ s 1 1 ROUT = min = ⋅ Abbreviated s n i m 6 5 2 1 1 ° /s² 1 DP 1/10 1 1 ROUT s 1U 256 ⋅ 1U 1 1/1 1U 1U = min ⋅ s RESULT 5. s 6 5 2 s n i Um n i Um /min 1 ROUT = 1 4. s n i m s 6 5 n i 2 m 1 1 1 R/min/s 0 DP U 3. min 256 ⋅ s Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Object 607Eh: polarity The algebraic sign of the position and speed values of the motor controller can be set with the corresponding polarity_flag. This can serve to invert the motor's direction of rotation with the same setpoint values. In most applications, it makes sense to set the position_polarity_flag and the velocity_polarity_flag to the same value. Setting of the polarity_flag influences only parameters when reading and writing. Parameters already present in the motor controller are not changed. Index 607Eh Name polarity Object Code VAR Data Type UINT8 Access rw PDO Mapping yes Units -- Value Range 40h, 80h, C0h Default Value 0 bit Value Name Significance 6 40h velocity_polarity_flag 0: 1: multiply by 1 multiply by –1 (default) (invers) 7 80h position_polarity_flag 0: 1: multiply by 1 multiply by –1 (default) (invers) Object 6091h: gear_ratio A gear can be set via this object. Index 6091h Name gear_ratio Object Code RECORD No. of Elements 2 Festo P.BE-CMMS-CO-SW-EN 1012a 65 4. Setting Parameters Sub-Index 01h Description motor_revolutions Data Type UINT32 Access rw PDO Mapping no Units -- Value Range 1 ... FFFFFFFFh Default Value 1 Sub-Index 02h Description shaft_revolutions Data Type UINT32 Access rw PDO Mapping no Units -- Value Range 1 ... FFFFFFFFh Default Value 1 Object 6092h: feed_constant The feed per motor revolution can be set over this object. Index 6092h Name feed_constant Object Code RECORD No. of Elements 2 Sub-Index 01h Description feed Data Type UINT32 Access rw PDO Mapping no Units -- Value Range 1 ... FFFFFFFFh Default Value 1 66 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Sub-Index 02h Description shaft_revolutions Data Type UINT32 Access rw PDO Mapping no Units -- Value Range 1 ... FFFFFFFFh Default Value 1 4.3 Output stage parameter 4.3.1 Overview The mains voltage is fed in to the output stage via a precharging circuit. When the power supply is switched on, the starting current is limited and charging is monitored. After precharging of the intermediate circuit, the charging circuit is bridged. This status is a requirement for issuing controller enable. The rectified mains voltage is smoothed with the condensers of the intermediate circuit. From the intermediate circuit, the motor is powered via the IGBTs. The output stage contains a series of safety functions, which can be partially parametrised: - Controller enable logic (software and hardware enable) - Overcurrent monitoring - Overvoltage / undervoltage monitoring of the intermediate circuit - Power partial monitoring 4.3.2 Description of the Objects Index Object Name 6510h VAR drive_data Type Attr. Object 6510h_10h: enable_logic For the output stage of the motor controller to be activated, the digital inputs output stage enable and controller enable must be set: The output stage enable has a direct effect on the control signals of the power transistors and would also be able to interrupt them in case of a defective microprocessor. The removal of the output stage enable with running motor thus ensures that the motor runs out unbraked or is only stopped by the holding brake, if on hand. The controller enable is processed by the microcontroller of the motor controller. Depending on the operating mode, the motor controller reacts differently after removal of this signal: Festo P.BE-CMMS-CO-SW-EN 1012a 67 4. Setting Parameters - Positioning mode and speed-regulated mode The motor is braked with a defined brake ramp after removal of the signal. The output stage is only switched off when the motor speed lies below 10 min-1 and the holding brake, if on hand, has activated. - Torque-regulated mode The output stage is switched off immediately after removal of the signal. At the same time, a holding brake, if on hand, is activated. And so the motor runs out or is stopped only by the holding brake that may be on hand. Warning Dangerous voltage Both signals do not guarantee that the motor is voltage-free. When operating the motor controller over the CAN bus, the two digital inputs output stage enable and controller enable can be placed together onto 24 V, and the enable can be controlled via the CAN bus. For this, the object 6510h_10h (enable_logic) must be set to two. For safety reasons, this takes place automatically with activation of CANopen (also after a reset of the motor controller). Index 6510h Name drive_data Object Code RECORD No. of Elements 192 Sub-Index 10h Description enable_logic Data Type UINT16 Access rw PDO Mapping no Units -- Value Range 0 ... 2 Default Value 0 Value Significance 0 Digital inputs output stage enable + controller enable 1 Digital inputs output stage enable + controller enable + RS232 2 Digital inputs output stage enable + controller enable + CAN 68 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Object 6510h_31h: power_stage_temperature The temperature of the output stage can be read via the object power_stage_temperature. If the temperature specified in object 6510h_32h (max_power_stage_temperature) is exceeded, the output stage shuts off and an error message is output. Sub-Index 31h Description power_stage_temperature Data Type INT16 Access ro PDO Mapping no Units °C Value Range -- Default Value -- 4.4 Current Regulator and Motor Adjustment Incorrect settings of the current control parameters and current limitations can result in malfunctions in the system. 4.4.1 Overview The parameter set of the motor controller must be adapted for the connected motor and the set of cables used. These data are automatically entered in the corresponding fields, depending on motor and controller type, during parameter setting with the start-up software FCT. Caution If the phase sequence is distorted in the motor or angle encoder cable, the result may be positive feedback, so the speed in the motor cannot be regulated. The motor can turn uncontrollably! Festo P.BE-CMMS-CO-SW-EN 1012a 69 4. Setting Parameters 4.4.2 Description of the Objects Index Object Name Type Attr. 6075h VAR motor_rated_current UINT32 rw 6073h VAR max_current UINT16 rw 604Dh VAR pole_number UINT8 rw 6410h RECORD motor_data rw 60F6h RECORD torque_control_parameters rw Affected objects from other chapters Index Object Name 2415h RECORD current_limitation Type Chapter 4.7 Setpoint value limitation Object 6075h: motor_rated_current This value can be taken from the motor rating plate and is entered in milliamperes. The effective value (RMS) is always assumed. No current can be specified above the motor controller nominal current (6510h_40h: nominal_current). Index 6075h Name motor_rated_current Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units mA Value Range 0 ... nominal_current Default Value 1499 If the object 6075h (motor_rated_current) is written over with a new value, the object 6073h (max_current) must always be parametrised again. 70 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Object 6073h: max_current As a rule, the motors may be overloaded for a certain time period. With this object, the maximum permissible motor current is set. It refers to the nominal motor current (object 6075h: motor_rated_current) and is set in thousandths. The range of values is limited upward by the maximum controller current (object 6510h_41h: peak_current). Many motors may be overloaded briefly by a factor of 2. In this case, the value 2000 is written into this object. The object 6073h (max_current) may only be written over if the object 6075h (motor_rated_current) was previously overwritten. Index 6073h Name max_current Object Code VAR Data Type UINT16 Access rw PDO Mapping yes Units per thousands of motor_rated_current Value Range -- Default Value 1675 Object 604Dh: pole_number The number of pins of the motor can be found in the motor data sheet. The number of pins is always even. The number of pin pairs is often specified instead of the number of pins. The number of pins then equals twice the number of pin pairs. Index 604Dh Name pole_number Object Code VAR Data Type UINT8 Access rw PDO Mapping yes Units -- Value Range 2 ... 254 Default Value see table Festo P.BE-CMMS-CO-SW-EN 1012a 71 4. Setting Parameters Value Significance 100 CMMS-ST 8 CMMS-AS 8 CMMD-AS Object 6410h_03h: iit_time_motor As a rule, the motors may be overloaded for a certain time period. This object specifies how long current can flow through the connected motor with the current specified in the object 6073h (max_current). After the I²t time has elapsed, to protect the motor the current is automatically limited to the value set in Object 6075h (motor_rated_current). Index 6410h Name motor_data Object Code RECORD No. of Elements 5 Sub-Index 03h Description iit_time_motor Data Type UINT16 Access rw PDO Mapping no Units ms Value Range 0 ... 10000 Default Value 1000 Object 6410h_04h: iit_ratio_motor Through the object iit_ratio_motor, the current extent of utilisation of the I2t limitation can be read in per thousands. Sub-Index 04h Description iit_ratio_motor Data Type UINT16 Access ro PDO Mapping no Units Promille Value Range -- Default Value -- 72 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters The error is activated through changing the error response. Reactions causing the drive to stop are returned as ON, all others as OFF. When overwriting with 0, the error response WARNING is set; when overwriting with 1, the error response CONTROLLER ENABLE OFF. Object 6410h_10h: phase_order In the phase sequence (phase_order), twisting between motor cable and angle encoder cable are taken into account. It can be taken taken from the commissioning software FCT. Sub-Index 10h Description phase_order Data Type INT16 Access rw PDO Mapping yes Units -- Value Range 0, 1 Default Value 1 Value Significance 0 Right-hand 1 Left-hand Object 6410h_11h: resolver_offset_angle The motors used have permanent magnets on the rotor. These generate a magnetic field, whose orientation toward the stator depends on the rotor position. For electronic commutation, the motor controller must always set the electromagnetic field of the stator in the correct angle to this permanent magnet field. To do this, it constantly determines the rotor position with an angle encoder (resolver, etc.). The orientation of the angle encoder to the permanent magnetic field must be entered in the object resolver_offset_angle. It must be calculated as follows: resolver_offset_angle = "Offset angle of the angle encoder" × Index 6410h Name motor_data Object Code RECORD No. of Elements 5 Festo P.BE-CMMS-CO-SW-EN 1012a 32767 180° 73 4. Setting Parameters Sub-Index 11h Description resolver_offset_angle Data Type INT16 Access rw PDO Mapping yes Units Value Range -32767 ... 32767 Default Value E000h (-45°) Object 60F6h: torque_control_parameters The data of the current controller must be taken from the FCT start-up software. Attention must be paid to the following calculations: Amplification of the current controller must be multiplied by 256. With an amplification of 1.5 in the "Current Controller" menu of the FCT start-up software, the value 384 = 180h must be written in the object torque_control_gain. The current controller time constant is specified in the FCT start-up software in milliseconds. To transfer this time constant into the object torque_control_time, it must previously be converted into 0.1 microseconds. With a specified time of 0.6 milliseconds, the corresponding value 600 is entered in the object torque_control_time. Index 60F6h Name torque_control_parameters Object Code RECORD No. of Elements 2 Sub-Index 01h Description torque_control_gain Data Type UINT16 Access rw PDO Mapping no Units 256 = "1" Value Range 0 ... 32*256 Default Value 256 74 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Sub-Index 02h Description torque_control_time Data Type UINT16 Access rw PDO Mapping no Units μs Value Range 104 ... 64401 Default Value 2000 4.5 Speed regulator 4.5.1 Overview The parameter set of the motor controller must be adapted for the application. In particular, the amplification is strongly dependent on dimensions that may be connected to the motor. The data must be optimally determined during system start-up using the FCT start-up software. Caution Incorrect setting of the speed regulator parameters can result in strong vibrations and possibly destroy parts of the system! 4.5.2 Description of the Objects Index Object Name 60F9h RECORD velocity_control_parameters Type Attr. rw Object 60F9h: velocity_control_parameters The data of the speed regulator must be taken from the FCT start-up software. Attention must be paid to the following calculations: Amplification of the speed regulator must be multiplied by 256. With a gain of 1.5 in the "Speed Controller" menu of the FCT start-up software, the value 384 = 180h must be written to the object velocity_control_gain. The speed regulator time constant is specified in the FCT start-up software in milliseconds. To transfer this time constant into the object velocity_control_time, it must previously be converted into microseconds. With a specified time of 2.0 milliseconds, the corresponding value 2000 is entered in the object velocity_control_time. Festo P.BE-CMMS-CO-SW-EN 1012a 75 4. Setting Parameters Index 60F9h Name velocity_control_parameter_set Object Code RECORD No. of Elements 2 Sub-Index 01h Description velocity_control_gain Data Type UINT16 Access rw PDO Mapping no Units 256 = Gain 1 Value Range 20 ... 64*256 (16384) Default Value 128 Sub-Index 02h Description velocity_control_time Data Type UINT16 Access rw PDO Mapping no Units μs Value Range 1 ... 32000 Default Value 8000 Sub-Index 04h Description velocity_control_filter_time Data Type UINT16 Access rw PDO Mapping no Units μs Value Range 1 ... 32000 Default Value 1600 76 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters 4.6 Position Controller (Position Control Function) 4.6.1 Overview This chapter describes all parameters required for the position controller. The position setpoint value (position_demand_value) of the curve generator is applied to the input of the position controller. In addition, the actual position value (position_actual_value) is added from the angle encoder (resolver, increment generator, etc.). The actions of the position controller can be influenced by parameters. It is possible to limit the output variable (control_effort) to keep the position control circuit stable. The output variable is supplied to the speed regulator as the speed setpoint value. All input and output variables of the position controller are converted in the Factor Group from the applicationspecific units into the respective internal units of the regulator. The following subfunctions are defined in this chapter: 1. Contouring error (following_Error) The deviation of the actual position value (position_actual_value) from the position setpoint value (position_demand_value) is designated as contouring error. If this contouring error is greater than specified in the contouring error window (following_error_window) for a specific time period, bit 13 following_error is set in the object statusword. The permissible time period can be specified via the object following_error_time_out. The current value of the contouring error can be read via following_error_actual_value. position_difference = position_demand_value (6062 ) - position_actual_value (6064 ) h h following_error_window (6065 ) h t 0 -following_error_window (6065 ) h time following_error_time_out (6066 ) t h statusword, Bit 13 (6041 ) h 1 t Fig. 4.4 Contouring error – functional overview The Fig. 4.5 shows how the window function is defined for the "contouring error" message. The area between xi-x0 and xi+x0 is defined symmetrically around the setpoint position (position_demand_value) xi. For example, the positions xt2 and xt3 lie outside this window (following_error_window). If the drive leaves this window and does not return to the window within the time specified in the object following_error_time_out, bit 13 following_error in statusword is set. Festo P.BE-CMMS-CO-SW-EN 1012a 77 4. Setting Parameters Fig. 4.5 Contour error 2. Position reached (Position Reached) This function offers the possibility of defining a position window around the target position (target_position). If the actual position of the drive is located within this range for a specific time – the position_window_time – the related bit 10 (target_reached) is set in the statusword. position_difference = position_demand_value (6062 ) - position_actual_value (6064 ) h h position_window (6067 ) h 0 - position_window (6067 ) h time position_window_time (6068 ) h statusword, Bit 10 (6041 ) h 1 Fig. 4.6 Position reached – Functional overview The Fig. 4.7 shows how the window function is defined for the "position reached" message. The area between xi-x0 and xi+x0 is defined symmetrically around the target position (target_position) xi. For example, the positions xt0 and xt1 lie outside this position window (position_window). If the drive is located in this window, a timer is started in the motor controller. If this timer reaches the time specified in the object position_window_time and the drive continuously remains in the valid range between xix0 and xi+x0 during this time, bit 10 target_reached in statusword is set. As soon as the drive leaves the permissible range, both bit 10 and the timer are set to zero. 78 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Fig. 4.7 Position reached 4.6.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 6062h VAR position_demand_value INT32 ro 6063h VAR position_actual_value_s INT32 ro 6064h VAR position_actual_value INT32 ro 6065h VAR following_error_window UINT32 rw 6066h VAR following_error_time_out UINT16 rw 6067h VAR position_window UINT32 rw 6068h VAR position_window_time UINT16 rw 60F4h VAR following_error_actual_value INT32 ro 60FAh VAR control_effort INT32 ro 60FBh RECORD position_control_parameter_set 60FCh VAR position_demand_value* rw INT32 ro Affected objects from other chapters Index Object Name Type Chapter 607Ah VAR target_position INT32 6.3 Positioning operating mode 607Ch VAR home_offset INT32 6.2 Homing run 607Dh VAR software_position_limit INT32 6.3 Positioning operating mode 607Eh VAR polarity UINT8 4.2 Conversion factors 6093h VAR position_factor UINT32 4.2 Conversion factors 6094h ARRAY velocity_encoder_factor UINT32 4.2 Conversion factors 6096h ARRAY acceleration_factor UINT32 4.2 Conversion factors 6040h VAR controlword INT16 5 Device control 6041h VAR statusword UINT16 5 Device control Festo P.BE-CMMS-CO-SW-EN 1012a 79 4. Setting Parameters Object 60FBh: position_control_parameter_set The parameter set of the motor controller must be adapted for the application. The data of the position regulator must be optimally determined during system start-up using the FCT start-up software. Caution Incorrect setting of the position regulator parameters can result in strong vibrations and possibly destroy parts of the system! The position controller compares the target location with the actual location and, from the difference, creates a correction speed(object 60FAh: control_effort), which is fed to the speed regulator. The position controller is relatively slow, compared to the current and speed regulator. Therefore, the controller works internally with activation, so the stabilisation work for the position controller is minimised and the controller can rapidly stabilise. A proportional link suffices as position controller. Amplification of the position controller must be multiplied by 256. With an amplification of 1.5 in the "Position Controller" menu of the FCT start-up software, the value 384 must be written in the object position_control_gain. Since the position controller already converts the smallest position deviations into appreciable correction speeds, in the case of a brief disturbance (e.g. brief jamming of the system) it would lead to very major stabilisation processes with very large correction speeds. This can be avoided if the output of the position controller is sensibly limited via the object position_control_v_max (e.g. 500 min-1). The size of the position deviation up to which the position controller will not intervene (dead area) can be defined with the object position_error_tolerance_window. This can be used for stabilisation, such as when there is play in the system. Index 60FBh Name position_control_parameter_set Object Code RECORD No. of Elements 5 Sub-Index 01h Description position_control_gain Data Type UINT16 Access rw PDO Mapping no Units 256 = "1" Value Range 0 ... 64*256 (16384) Default Value 52 80 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Sub-Index 04h Description position_control_v_max Data Type UINT32 Access rw PDO Mapping no Units speed units Value Range 0 ... 131072 min-1 Default Value 500 Sub-Index 05h Description position_error_tolerance_window Data Type UINT32 Access rw PDO Mapping no Units position units Value Range 0 ... 65536 (1 U) Default Value 0 Object 6062h: position_demand_value The current position setpoint value can be read out via this object. The curve generator feeds this into the position controller. Index 6062h Name position_demand_value Object Code VAR Data Type INT32 Access ro PDO Mapping yes Units Position units Value Range -- Default Value -- Festo P.BE-CMMS-CO-SW-EN 1012a 81 4. Setting Parameters Object 6063h: position_actual_value_s (increments) The actual position can be read out via this object. The angle encoder feeds this to the position controller. This object is specified in increments. Index 6063h Name position_actual_value_s Object Code VAR Data Type INT32 Access ro PDO Mapping yes Units inkrements Value Range -- Default Value -- Object 6064h: position_actual_value (user-defined units) The actual position can be read out via this object. The angle encoder feeds this to the position controller. This object is specified in user-defined increments. Index 6064h Name position_actual_value Object Code VAR Data Type INT32 Access ro PDO Mapping yes Units position units Value Range -- Default Value -- Object 6065h: following_error_window The object following_error_window (contouring error window) defines a symmetrical range around the position setpoint value (position_demand_value). If the actual position value (position_actual_value) is outside the contouring error window (following_error_window), a contouring error occurs and bit 13 is set in the object statusword. The following can cause a contouring error: - The drive is blocked - The positioning speed is too high - the acceleration values are too large - the object following_error_window has too small a value - the position controller is not correctly parametrised 82 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Index 6065h Name following_error_window Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units position units Value Range 0 ... 7FFFFFFFh Default Value 23D7h Object 6066h: following_error_time_out If a contouring error longer than defined in this object occurs, the related bit 13 following_error is set in the statusword. Index 6066h Name following_error_time_out Object Code VAR Data Type UINT16 Access rw PDO Mapping yes Units ms Value Range 0 ... 27314 Default Value 100 Object 60F4h: following_error_actual_value Index 60F4h Name following_error_actual_value Object Code VAR Data Type INT32 Access ro PDO Mapping yes Units position units Value Range - Default Value - Festo P.BE-CMMS-CO-SW-EN 1012a 83 4. Setting Parameters Object 60FAh: control_effort The output variable of the position controller can be read via this object. This value is internally fed to the speed regulator as setpoint value. Index 60FAh Name control_effort Object Code VAR Data Type INT32 Access ro PDO Mapping yes Units speed units Value Range -- Default Value -- Object 6067h: position_window With the object position_window, a symmetrical area is defined around the target position (target_position). If the actual position value (position_actual_value) lies within this area for a certain time, the target position (target_position) is considered reached. Index 6067h Name position_window Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units position units Value Range -- Default Value 7AEh 84 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Object 6068h: position_window_time If the actual position of the drive is located within the positioning window (position_window) for as long as defined in this object, the related bit 10 target_reached is set in the statusword. Index 6068h Name position_window_time Object Code VAR Data Type UINT16 Access rw PDO Mapping yes Units ms Value Range 0…65536 Default Value 400 4.7 Setpoint value limitation 4.7.1 Description of the objects Objects treated in this chapter Index Object Name 2415h RECORD current_limitation Type Attr. rw Object 2415h: current_limitation With the object group current_limitation, the maximum peak current for the motor can be limited in the operating modes profile_position_mode, interpolated_position_mode, homing_mode und velocity_mode, which makes a torque-limited speed operation possible. The setponit value source of the limit torque is specified via the object limit_current_input_channel. Here, a choice can be made between specification of a direct setpoint value (fieldbus / RS232) or specification via an analogue input. Depending on the source chosen, either the limit torque (source = fieldbus / RS232) or the scaling factor for the analogue inputs (source = analogue input) is specified via the object limit_current. In the first case, the torque-proportional current, in mA, is limited directly; in the second case, the current that should correspond to a voltage of 10 V is specified, in mA. Festo P.BE-CMMS-CO-SW-EN 1012a 85 4. Setting Parameters Index 2415h Name current_limitation Object Code RECORD No. of Elements 2 Sub-Index 01h Description limit_current_input_channel Data Type INT8 Access rw PDO Mapping no Units -- Value Range 0 ... 4 Default Value 0 Sub-Index 02h Description limit_current Data Type INT32 Access rw PDO Mapping no Units mA Value Range -- Default Value 3550 Value Significance 0 No limitation 1 AIN0 2 Reserved 3 RS232 4 CAN 86 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters 4.8 Digital inputs and outputs 4.8.1 Overview All digital inputs of the motor controller can be read via the CAN bus, and almost all digital outputs can be set as desired. Moreover, status messages can be assigned to the digital outputs of the motor controller. 4.8.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 60FDh VAR digital_inputs UINT32 ro 60FEh ARRAY digital_outputs UINT32 rw Object 60FDh: digital_inputs The digital inputs can be read via the object 60FDh. Index 60FDh Name digital_inputs Object Code VAR Data Type UINT32 Access ro PDO Mapping yes Units -- Value Range according to table below Default Value 0 bit Value Digital input 0 00000001h Negative limit switch 1 00000002h Positive limit switch 3 00000008h Interlock (controller or output stage enable missing) 16 … 29 00010000h … 20000000h DIN0 ... DIN13 30 40000000h CAN baud rate 0 off 31 80000000h CAN baud rate 1 off Festo P.BE-CMMS-CO-SW-EN 1012a 87 4. Setting Parameters Object 60FEh: digital_outputs The digital outputs can be read via the object 60FEh. The three outputs can then be set as desired via the object digital_outputs_data. It should be noted that a delay of up to 10 ms may occur in triggering the digital outputs. When the outputs are really set can be determined by reading back the object 60FEh. Index 60FEh Name digital_outputs Object Code ARRAY No. of Elements 1 Data Type UINT32 Sub-Index 01h Description digital_outputs_data Access rw PDO Mapping yes Units -- Value Range -- Default Value 0 bit Value Digital output 0 00000001h Brake; read-only 16 00010000h Ready to operate; read-only 17 … 19 00020000h … 00080000h DOUT1 ... DOUT3 EXAMPLE A write access always influences bit17 to bit19. To set DOUT1: 1.) The object 60FEh_01h digital_outputs_data(DOUT1 ... DOUT3)is being read. 2.) Then bit17 is additionally set. 3.) The object 60FEh_01h digital_outputs_data(DOUT1 ... DOUT3)is being read again. 88 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters 4.9 Limit switch 4.9.1 Overview Limit switches are used for the definition of the reference position of the motor controller. Further information on the possible homing methods can be found in chapter 6.2. Operating mode homing (Homing Mode). 4.9.2 Description of the Objects Index Object Name 6510h RECORD drive_data Type Attr. rw Object 6510h_11h: limit_switch_polarity The polarity of the limit switches can be programmed via the object 6510h_11h (limit_switch_polarity). For normally closed limit switches, a zero is in this object, whereas a one is entered when normally open contacts are used. Index 6510h Name drive_data Object Code RECORD No. of Elements 44 Sub-Index 11h Description limit_switch_polarity Data Type INT16 Access rw PDO Mapping no Units -- Value Range 0, 1 Default Value 0 Value Significance 0 Normally closed contact 1 Normally open contact Festo P.BE-CMMS-CO-SW-EN 1012a 89 4. Setting Parameters Object 6510h_15h: limit_switch_deceleration The object limit_switch_deceleration establishes the deceleration used in braking when the limit switch is reached during normal operation (limit switch emergency stop ramp). Sub-Index 15h Description limit_switch_deceleration Data Type INT32 Access rw PDO Mapping no Units acceleration units Value Range 0 ... 3000000 Default Value 2560000 4.10 Sampling of positions 4.10.1 Overview The CMMS/CMMD family offers the possibility to save the actual position value on the rising or falling edge of a digital input. This position value can then be read out for calculation within a controller, for example. Uultimately be read via the objects sample_position_rising_edge and sample_position_falling_edge. 4.10.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 204Ah RECORD sample_data 204Ah_05h VAR sample_position_rising_edge INT32 ro 204Ah_06h VAR sample_position_falling_edge INT32 ro ro Object 204Ah: sample_data Index 204Ah Name sample_data Object Code RECORD No. of Elements 6 90 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters The following objects contain the sampled positions. Sub-Index 05h Description sample_position_rising_edge Data Type INT32 Access ro PDO Mapping yes Units position units Value Range -- Default Value -- Sub-Index 06h Description sample_position_falling_edge Data Type INT32 Access ro PDO Mapping yes Units position units Value Range -- Default Value -- 4.11 Index Device Information Object 1000h_00h Name Type Attr. device_type UINT32 ro 1008h VAR manufacturer_device_name STR ro 1009h VAR manufacturer_hardware_version STR ro 100Ah VAR manufacturer_firmware_version STR ro 1018h RECORD identity_object rw 6510h RECORD drive_data rw Via numerous CAN objects, the most varied of information, such as motor controller type, firmware used, etc. can be read out of the device. Festo P.BE-CMMS-CO-SW-EN 1012a 91 4. Setting Parameters 4.11.1 Description of the Objects Object 1000h: device_type Through the object device_type, the device type of the controller can be read. Index 1000h Description device_type Data Type UINT32 Access ro PDO Mapping no Units -- Value Range 0x00020192 ... 0x00040192 Default Value see table Value Significance 40192h CMMS-ST 20192h CMMS-AS 20192h CMMD-AS Object 1018h: identity_object Through the identity_object established in the DS301, the motor controller can be uniquely identified in a CANopen-network. For this purpose, the manufacturer code (vendor_id), a unique product code (product_code), the revision number of the CANopen implementation (revision_number) and the serial number of the device (serial_number) can be read out. Index 1018h Name identity_object Object Code RECORD No. of Elements 4 Sub-Index 01h Description vendor_id Data Type UINT32 Access ro PDO Mapping no Units -- Value Range 0x0000001D Default Value 0x0000001D 92 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters Sub-Index 02h Description product_code Data Type UINT32 Access ro PDO Mapping no Units -- Value Range 0x00001116 ... 0x00001118 Default Value see table Value Significance 1116h CMMS-ST 1117h CMMS-AS 1118h CMMD-AS Sub-Index 03h Description revision_number Data Type UINT32 Access ro PDO Mapping no Units MMMMSSSSh (M: main version, S: sub version) Value Range -- Default Value 1 Sub-Index 04h Description serial_number Data Type UINT32 Access ro PDO Mapping no Units JMNNNNNN (J: Jahr (year), M: Monat (month), N: Nummer (number)) Value Range -- Default Value -- Festo P.BE-CMMS-CO-SW-EN 1012a 93 4. Setting Parameters Object 6510h_A9h: firmware_main_version The main version number of the firmware (product stage) can be read out via the object firmware_main_version. Sub-Index A9h Description firmware_main_version Data Type UINT32 Access ro PDO Mapping no Units MMMMSSSSh (M: main version, S: sub version) Value Range -- Default Value -- Object 6510h_AAh: firmware_custom_version The version number of the customer-specific variants of the firmware can be read out via the object firmware_custom_version. Sub-Index AAh Description firmware_custom_version Data Type UINT32 Access ro PDO Mapping no Units MMMMSSSSh (M: main version, S: sub version) Value Range -- Default Value -- Object 6510h_ADh: km_release Through the version number of the km_release, firmware statuses (for CMMS-ST/AS from firmware version 1.4.0.x.y) of the same product stage can be differentiated. Sub-Index ADh Description km_release Data Type UINT32 Access ro PDO Mapping no Units -- Value Range MMMMSSSSh (M: main version, S: sub version) Default Value -- 94 Festo P.BE-CMMS-CO-SW-EN 1012a 4. Setting Parameters 4.12 Error management 4.12.1 Overview The motor controllers of the CMMS/CMMD offer the option to change the error reaction of individual events, e.g. the occurrence of a contouring error. As a result, the motor controller reacts differently when a certain event occurs: Depending on the setting, braking down can occur and the output stage shut off immediately, but also just a warning can be shown on the display. For every event, a minimum reaction is intended by the manufacturer, which cannot be fallen below. And so "critical" errors, such as not reparametrising 06-0 short circuit output stage, since here an immediate switch-off is necessary to protect the motor controller from possible destruction. If a lower error response is entered than is permissible for the respective error, the value is limited to the lowest permissible error response. 4.12.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 2100h RECORD error_management 2100h_01 h VAR error_number UINT8 rw 2100h_02 h VAR error_reaction_code UINT8 rw ro Object 2100h: error_management Index 2100h Name error_management Object Code RECORD No. of Elements 2 The main error number whose response should be changed must be specified in the object error_number. The main error number is normally specified before the hyphen (e.g. error 08-2, main error number 8). For possible error numbers, also see chap. 3.5 Festo P.BE-CMMS-CO-SW-EN 1012a 95 4. Setting Parameters Sub-Index 01h Description error_number Data Type UINT8 Access rw PDO Mapping no Units -- Value Range 1 … 96 Default Value 1 The response of the error can be changed in the object error_reaction_code. If the response falls below the manufacturer's minimum response, it is limited to this minimum. The response actually set can be determined by reading back. Sub-Index 02h Description error_reaction_code Data Type UINT8 Access rw PDO Mapping no Units -- Value Range 0, 3, 5, 8 Default Value Depends on error_number Value Significance 0 No action 3 Warning on the 7-segment display 5 Braking with fast stop ramp 8 Output stage off 96 Festo P.BE-CMMS-CO-SW-EN 1012a 5. Device Control 5. Device Control 5.1 Status Diagram (State Machine) 5.1.1 Overview The following chapter describes how the motor controller can be regulated under CANopen, that is, how the output stage is switched on or an error is acknowledged, for example. Under CANopen, the entire regulation of the motor controller is achieved via two objects: The host can regulate the motor controller via the controlword, while the status of the motor controller can be read back in the object statusword. The following terms are used to explain controller regulation: Status: (State) The motor controller is in different statuses, depending on whether the final stage is switched on or an error has occurred, for example. The statuses defined under CANopen are presented in the course of the chapter. Example: SWITCH_ON_DISABLED Status transition (State Transition) Just as with the statuses, CANopen also defines how to go from one status to another (e.g. to acknowledge an error). Status transitions are triggered by the host by setting bits in the controlword or internally through the motor controller, when it recognises an error, for example. Command (Command) To trigger status transitions, certain combinations of bits must be set in the controlword. Such a combination is designated a command. Example: Enable Operation Status diagram (State Machine) The statuses and status transitions together form the status diagram, that is, the overview of all conditions and the transitions possible from there. Festo P.BE-CMMS-CO-SW-EN 1012a 97 5. Device Control 5.1.2 Status diagram of the motor controller (State Machine) Fig. 5.1 Status diagram of the motor controller The status diagram can be roughly divided into three areas: "Power Disabled" means that the final stage is switched off and "Power Enabled" that the final stage is switched on. The statuses needed for handling errors are summarised in the "Fault" area. The most important statuses of the motor controller are shown highlighted in the diagram. After it is switched on, the motor controller initialises itself and then reaches the status SWITCH_ON_DISABLED. In this status, the CAN communication is completely function capable and the motor controller can be parametrised (e.g. the "speed adjustment" operating mode is set). The final stage is switched off and the shaft is thus freely rotatable. Through the status transitions 2, 3, 4 – which correspond in principle to the CAN controller enable – one reaches the status OPERATION_ENABLE. In this status, the output stage is switched on and the motor regulated in accordance with the set operating mode. Therefore, you should always make sure beforehand that the drive is correctly parametrised and that a corresponding setpoint value equals zero. The status transition 9 corresponds to removal of the output stage release, that is, a motor that is still running would fizzle out unregulated. If an error occurs (regardless from which status), the system ultimately branches into the FAULT status. Depending on the severity of the error, certain actions, such as emergency braking, can still be performed (FAULT_REACTION_ACTIVE). 98 Festo P.BE-CMMS-CO-SW-EN 1012a 5. Device Control In order to perform the named status transitions, certain bit combinations must be set in the controlword (see below). The lower 4 bits of the controlwords are jointly evaluated in order to trigger a status transition. In the following, first only the most important status transitions 2, 3, 4, 9 and 15 are explained. A table of all possible statuses and status transitions are found at the end of this chapter. The following table contains the desired status transition in the 1st column and in the 2nd column the requirements necessary for it (usually a command through the host, here depicted with frame). How this command is generated, that is, which bits must be set in the controlword, is evident in the 3rd column (x = not relevant). No. Is performed when Bit combination (controlword) Bit Action 3 2 1 0 2 Output stage and controller enable prev. + command Shutdown Shutdown = x 1 1 0 None 3 Command Switch On Switch On = x 1 1 1 Switching on the final stage 4 Command Enable Operation Enable Operation = 1 1 1 1 Control in accordance with set operating mode 9 Command Disable Voltage Disable Voltage = x x 0 x Final stage is blocked. Motor rotates freely. 15 Error eliminated+ command Fault Reset Fault Reset = Bit 7 = Acknowledge error Table 5.1: Most important status transitions of the motor controller EXAMPLE After the motor controller has been parametrised, the motor controller should be "enabled", that is, the output stage switched on: 1.) The motor controller is in the status SWITCH_ON_DISABLED 2.) The motor controller should be in the status OPERATION_ENABLE 3.) The transitions 2, 3 and 4 are to be carried out according to the status diagram (Fig. 5.1). 4.) From Table 5.1 follows: Transition 2: controlword = 0006h New status: READY_TO_SWITCH_ON *1) Transition 3: controlword = 0007h New status: SWITCHED_ON *1) Transition 4: controlword = 000Fh New status: OPERATION_ENABLE *1) Notes: 1.) The example assumes that no other bits are set in the controlword (for the transitions, only bits 0 … 3 are important). 2.) Transitions 3 and 4 can be combined by setting the controlword immediately to 000Fh. For status transition 2, the set bit 3 is not relevant. 1) * The host must wait until the status in the statusword can be read back. This is explained in detail below. Festo P.BE-CMMS-CO-SW-EN 1012a 99 5. Device Control Status diagram: statuses The following table lists all statuses and their meaning: Name Significance NOT_READY_TO_SWITCH_ON The motor controller performs a self-test. The CAN communication does not work yet. SWITCH_ON_DISABLED The motor controller has completed its self-test. CAN communication is possible. READY_TO_SWITCH_ON The motor controller waits until the digital inputs "output stage" and "controller enable" are at 24 V. (Controller enable logic "Digital input and CAN"). SWITCHED_ON *1) The final stage is switched on. OPERATION_ENABLE *1) Voltage to the motor is on, and the motor is regulated according to the operating mode. QUICKSTOP_ACTIVE *1) The quick stop function is carried out (see: quick_stop_option_ code). Voltage to the motor is on, and the motor is regulated according to the quick stop function. FAULT_REACTION_ACTIVE *1) An error has occurred. In case of critical errors, the system immediately switches into the Fault status. Otherwise, the action specified in the fault_reaction_option_code is carried out. Voltage to the motor is on, and the motor is regulated according to the fault reaction function. FAULT An error has occurred. No voltage is applied to the motor. *1) The final stage is switched on. Status diagram: Status transitions The following table lists all statuses and their meaning: No. Is performed when Bit combination (controlword) Bit Action 3 2 1 0 0 Switched on or reset occurs Internal transition Perform self-test 1 Self-test successful Internal transition Activation of CAN communication 2 Output stage and controller enable prev. + command Shutdown Shutdown = x 1 1 0 - 3 Command Switch On Switch On = x 1 1 1 Switching on the final stage 4 Command Enable Operation Enable Operation = 1 1 1 1 Control in accordance with set operating mode 5 Command Disable Operation Disable Operation = 0 1 1 1 100 Final stage is blocked. Motor rotates freely Festo P.BE-CMMS-CO-SW-EN 1012a 5. Device Control No. Is performed when Bit combination (controlword) Bit Action 3 2 1 0 Final stage is blocked. Motor rotates freely 6 Command Shutdown Shutdown = x 1 1 0 7 Command Quick Stop Quick Stop = x 0 1 x - 8 Command Shutdown Shutdown = x 1 1 0 Final stage is blocked. Motor rotates freely 9 Command Disable Voltage Disable Voltage = x x 0 x Final stage is blocked. Motor rotates freely. 10 Command Disable Voltage Disable Voltage = x x 0 x Final stage is blocked. Motor rotates freely 11 Command Quick Stop Quick Stop Braking is introduced in = x 0 1 x accordance with quick_stop_option_code. 12 Braking ended without command Disable Voltage Disable Voltage = x x 0 x Final stage is blocked. Motor rotates freely 13 Error occurred Internal transition In case of uncritical errors, reaction according to fault_reaction_option_code. For critical errors, transition 14 occurs 14 Error resolution is ended Internal transition Final stage is blocked. Motor rotates freely 15 Error eliminated+ command Fault Reset Fault Reset = Bit 7 = Acknowledge error (with rising flank) Caution Output stage blocked … … means that the power semiconductors (transistors) can no longer be actuated. If this status is taken with a turning motor, it fizzles out unbraked. If a mechanical motor brake is present, it is automatically actuated. The signal does not guarantee that the motor is really voltage-free. Caution Output stage and controller enable enabled … … means that the motor is actuated and regulated according to the chosen operating mode. If a mechanical motor brake is present, it is automatically triggered. In case of a defect or incorrect parametrisation (motor current, number of poles, resolver offset angle, etc.), this can result in uncontrolled behaviour of the drive. Festo P.BE-CMMS-CO-SW-EN 1012a 101 5. Device Control 5.1.3 controlword (control word) Object 6040h: controlword With the controlword, the current status of the motor controller can be changed or a certain action (e.g. start of homing) can be directly triggered. The function of bits 4, 5, 6 and 8 depends on the current operating mode (modes_of_operation) of the motor controller, which is explained after this chapter. Index 6040h Name controlword Object Code VAR Data Type UINT16 Access rw PDO Mapping yes Units -- Value Range -- Default Value 0 Bit Value Function 0 0001h 1 0002h Control the status transitions. 2 0004h (These bits are evaluated together) 3 0008h 4 0010h new_set_point / start_homing_operation / enable_ip_mode 5 0020h change_set_immediatly 6 0040h absolute / relative 7 0080h reset_fault 8 0100h halt: 9 0200h reserved set to 0 10 0400h reserved set to 0 11 0800h reserved set to 0 12 1000h reserved set to 0 13 2000h reserved set to 0 14 4000h reserved set to 0 15 8000h reserved set to 0 Table 5.2: Bit arrangement of the controlword 102 Festo P.BE-CMMS-CO-SW-EN 1012a 5. Device Control As already comprehensively described, status transitions can be carried out with bits 0 … 3. The commands necessary for this are presented again here in an overview. The Fault Reset command is generated by a positive edge change (from 0 to 1) of bit 7. Command: Bit 7 Bit 3 Bit 2 Bit 1 Bit 0 0080h 0008h 0004h 0002h 0001h Shutdown × × 1 1 0 Switch On × × 1 1 1 Disable Voltage × × × 0 × Quick Stop × × 0 1 × Disable Operation × 0 1 1 1 Enable Operation × 1 1 1 1 × × × × Fault Reset Table 5.3: Overview of all commands (x = not relevant) As some status modifications require a certain amount of time, all status modifications triggered via the controlword must be read back via the statusword. Only when the requested status can also be read in the statusword may a further command be written via the controlword. The remaining bits of the controlword are explained in the following. Some bits have a different meaning, depending on the operating mode (modes_of_operation), that is, whether the motor controller is speed or torque-controlled: Depending on modes_of_operation: Bit 4 new_set_point In the Profile Position Mode: A rising edge signals to the motor controller that a new positioning task should be undertaken. Also see chapter 6.2 on this. start_homing_operation In the Homing Mode: A rising edge causes the parametrised reference travel to start. A falling edge interrupts a running reference travel prematurely. enable_ip_mode In the Interpolated Position Mode: This bit must be set when the interpolation data records are supposed to be evaluated. It is acknowledged through the bit ip_mode_active in the statusword. See also chapter 6.4 Festo P.BE-CMMS-CO-SW-EN 1012a 103 5. Device Control Bit 5 change_set_immediatly Only in the Profile Position Mode: If this bit is not set, any positioning tasks currently running will be worked off before any new one is begun. If the bit is set, an ongoing positioning is interrupted immediately and replaced by the new positioning task. Also see chapter 6.3 on this. Bit 6 relative Only in the Profile Position Mode: If the bit is set, the motor controller refers the target position (target_position) of the current positioning job to the setpoint position (position_demand_value) of the position controller. Bit 7 reset_fault In the transition from zero to one, the motor controller tries to acknowledge the existing faults. This is only successful if the cause of the error has been resolved. Dependent on modes_of_operation: Bit 8 halt In the Profile Position Mode: If the bit is set, the ongoing positioning is interrupted. Braking is with the profile_deceleration. After the process is ended, the bit target_reached is set in the statusword. Deletion of the bit has no effect. halt In the Profile Velocity Mode: If the bit is set, the speed is reduced to zero. Braking is with the profile_deceleration. Deletion of the bit causes the motor controller to accelerate again. halt In the Profile Torque Mode: If the flag is set, the torque is lowered to zero. This occurs with the torque_slope. Deletion of the bit causes the motor controller to accelerate again. halt In the Homing Mode: If the bit is set, the ongoing reference travel is interrupted. Deletion of the bit has no effect. 104 Festo P.BE-CMMS-CO-SW-EN 1012a 5. Device Control 5.1.4 Read-out of the motor controller status Just as various status transitions can be triggered via the combination of several bits of the controlword, the status of the motor controller can be read out via the combination of various bits of the statusword. The following table lists the possible statuses of the status diagram as well as the related bit combination, with which they are displayed in the statusword. Mask Value 0 004Fh 0000h 0 0 004Fh 0040h 0 0 1 006Fh 0021h 0 0 1 1 006Fh 0023h 1 0 1 1 1 006Fh 0027h 0 × 1 0 0 0 004Fh 0008h Fault_Reaction_Active 0 × 1 1 1 1 004Fh 000Fh Quick_Stop_Active 0 0 0 1 1 1 006Fh 0007h Status Bit 6 Bit 5 Bit 3 Bit 2 Bit 1 Bit 0 0040h 0020h 0008h 0004h 0002h 0001h Not_Ready_To_Switch_On 0 × 0 0 0 Switch_On_Disabled 1 × 0 0 Ready_to_Switch_On 0 1 0 Switched_On 0 1 Operation_Enable 0 Fault Table 5.4: Device status (x = not relevant) EXAMPLE The above example shows which bits in the controlword need to be set in order to enable the motor controller. Now the newly written status should be read out of the statusword: Transition from SWITCH_ON_DISABLED to OPERATION_ENABLE: 1.) Write status transition 2 into the controlword. 2.) Wait until the status READY_TO_SWITCH_ON is displayed in the statusword. Transition 2: 3.) 4.) controlword = 0006h Wait until (statusword & 006Fh) = 0021h *1) Transitions 3 and 4 can be written together into the controlword. Wait until the status OPERATION_ENABLE is displayed in the statusword. Transition 3+4: controlword = 000Fh Wait until (statusword & 006Fh) = 0027h *1) Note: The example assumes that no other bits are set in the controlword (for the transitions, only bits 0 ... 3 are important). *1)To identify the statuses, bits that are not set must also be evaluated (see table). For that reason, the statusword must be masked accordingly. Festo P.BE-CMMS-CO-SW-EN 1012a 105 5. Device Control 5.1.5 statusword (Status words) Object 6041h: statusword Index 6041h Name statusword Object Code VAR Data Type UINT16 Access ro PDO Mapping yes Units -- Value Range -- Default Value -- Bit Value Function 0 0001h Status of the motor controller (see Table 5.4). (These bits must be evaluated together) 1 0002h 2 0004h 3 0008h 4 0010h voltage_enabled 5 0020h Status of the motor controller (see Table 5.4). 6 0040h 7 0080h warning 8 0100h drive_is_moving 9 0200h remote 10 0400h target_reached 11 0800h internal_limit_active 12 1000h set_point_acknowledge / speed_0 / homing_attained / ip_mode_active 13 2000h following_error / homing_error 14 4000h reserved 15 8000h Drive referenced Table 5.5: Bit arrangement in the status word: All bits of the statusword are unbuffered. They represent the current device status. 106 Festo P.BE-CMMS-CO-SW-EN 1012a 5. Device Control Besides the motor controller status, various events are displayed in the statusword, that is, to each bit is assigned a specific event, such as contouring error. The individual bits have the following meaning thereby: Bit 4 voltage_enabled This bit is set when the final stage transistors are switched on. Warning In case of a defect, the motor can still be under voltage. Bit 5 quick_stop If the bit is deleted, the drive carries out a Quick Stop according to quick_stop_option_code. Bit 7 warning This bit shows that a direction of rotation is blocked because one of the limit switches has been triggered. The setpoint value lock is deleted again when an error acknowledgement is performed (see controlword, fault_reset) Bit 8 drive_is_moving This bit shows that the motor is currently moving. Bit 9 remote This bit shows that the final stage of the motor controller can be enabled via the CAN network. It is set when the controller enable logic is correspondingly set via the object enable_logic. Depending on modes_of_operation: Bit 10 target_reached In the Profile Position Mode: The bit is set when the current target position is reached and the current position (position_actual_value) is located in the parametrised position window (position_window). It is also set when the drive comes to a standstill with set halt bit. It is deleted as soon as a new target is specified. Festo P.BE-CMMS-CO-SW-EN 1012a 107 5. Device Control target_reached In the Profile Velocity Mode: The bit is set when the speed (velocity_actual_value) of the drive is within the tolerance window (velocity_window, velocity_window_time). Bit 11 internal_limit_active This bit shows that the I2t limitation is active. Depending on modes_of_operation: Bit 12 set_point_acknowledge In the Profile Position Mode: This bit is set when the motor controller has recognised the set bit new_set_point in the controlword. It is deleted again after the bit new_set_point in the controlword has been set to zero. Also see chapter 6.3 on this. speed_0 In the Profile Velocity Mode: This bit is set when the current actual speed (velocity_actual_value) of the drive is within the related tolerance window (velocity_threshold). homing_attained In the Homing Mode: This bit is set when the reference travel has ended without error. ip_mode_active In the Interpolated Position Mode: This bit shows that interpolation is active and the interpolation data records have been evaluated. It is set when requested by the bit enable_ip_mode in the controlword. See also chapter 6.4 Dependent on modes_of_operation: Bit 13 following_error In the Profile Position Mode: This bit is set when the current actual position (position_actual_value) differs from the target position (position_demand_value) so much that the difference lies outside the parametrised tolerance window (following_error_window, following_error_time_out). 108 Festo P.BE-CMMS-CO-SW-EN 1012a 5. Device Control homing_error In the Homing Mode: This bit is set when homing is interrupted (Halt bit), both limit switches are triggered simultaneously or the limit switch search travel already performed is greater than the specified positioning space (min_position_limit, max_position_limit). Bit 14 reserved This bit is unused and must not be evaluated. Bit 15 Drive referenced This bit shows that the drive (after being switched on) has already been successfully referenced. Object 1002h_00h: manufacturer_status_register Through the object manufacturer_status_register, the current status of the controller can be read. Sub-Index 00h Description manufacturer_status_register Data Type UINT32 Access ro PDO Mapping no Units -- Value Range 0 … FFFFFFFFh Default Value -- Festo P.BE-CMMS-CO-SW-EN 1012a 109 5. Device Control Bit Name 0 1= homing active 1 1= reference switch reached 2 1= negative limit switch reaches DIN7 3 1= positive limit switch reaches DIN8 4 1= Message positioning expired (x_set = pos_x_set) 5 1= Target reached message (x_act = x_set +/-n_mes_hyst) 6 1= Remaining path positioning reached 7 1= Reverse mode 8 1= Speed report n_act=(n_mes +/-n_mes_hyst) 9 1= Speed report n_act=(n_set +/-n_mes_hyst) 10 1= Positioning started 11 I²t monitoring 1= limitation to nominal current; I²t motor/servo 12 1= SinCos encoder activated 13 1= Speed report n_act=(0 +/-n_mes_hyst) 14 Output stage enable 1= output stage is switched on 15 Ready status 1 16 Warning message 1 = Warning (no common error and no switch-off) 17 Common error message 1 = common error 18 1 = Negative direction blocked 19 1 = Positive direction blocked 20 1 = Homing has been carried out 21 1 = Automatic encoder comparison active 22 1 = MMC initialised 23 1 = Output stage enabled 24 1 = Controller and output stage INTERNAL enabled 25 1 = Speed setpoint value INTERNAL enabled 26 0 = Normal / 1 = Emergency stop without position sensor active (option) 27 0 = Normal / 1 = MOTID mode 28 1 = Write permission available 29 1 = Technology module equipped 30 1 = MMC plugged 31 1 = Safe halt equipped 110 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes 6. Operating modes 6.1 Setting the operating mode 6.1.1 Overview The motor controller can be placed into a number of operating modes. Only some are specified in detail under CANopen: - Torque-regulated operation profile torque mode - Speed-adjusted operation profile velocity mode - Homing Homing mode - Positioning mode profile position mode - Synchronous position specification interpolated position mode 6.1.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 6060h VAR modes_of_operation INT8 wo 6061h VAR modes_of_operation_display INT8 ro Object 6060h: modes_of_operation The object modes_of_operation sets the operating mode of the motor controller. Index 6060h Name modes_of_operation Object Code VAR Data Type INT8 Access rw PDO Mapping yes Units -- Value Range 1, 3, 4, 6, 7 Default Value -- Festo P.BE-CMMS-CO-SW-EN 1012a 111 6. Operating modes Value Significance 1 Profile Position Mode (position controller with positioning mode) 3 Profile Velocity Mode (speed regulator with setpoint value ramp) 4 Torque Profile Mode (torque regulator with setpoint value ramp) 6 Homing Mode (reference travel) 7 Interpolated Position Mode The current operating mode can only be read in the object modes_of_operation_display! Since a change in operating mode can take some time, one must wait until the newly selected mode appears in the object modes_of_operation_display. Object 6061h: modes_of_operation_display In the object modes_of_operation_display, the current operating mode of the motor controller can be read. If an operating mode is set via the object 6060h, besides the actual operating mode, the setpoint value activations (setpoint value selector) needed for operation of the motor controller under CANopen must also be made. These are Profile Velocity Mode Profile Torque Mode Selector A Speed setpoint value (fieldbus 1) Torque setpoint value (fieldbus 1) Selector B Torque limitation, if necessary inactive Selector C Speed setpoint value (synchronous speed) inactive In addition, the setpoint value ramp is always switched on. Only if these activations are set in the stated way will one of the CANopen operating modes be returned. If these settings are changed, for example, with the FCT start-up software, a respective "user" operating mode is returned to show that the selectors have been changed. Index 6061h Name modes_of_operation_display Object Code VAR Data Type INT8 Access ro PDO Mapping yes Units -- Value Range -1, -11, -12, -13, -14, -15, 1, 3, 4, 6, 7 Default Value 3 112 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Value Significance -1 Unknown operating mode / change in operating mode -11 User Position Mode -12 Internal speed regulation without setpoint value ramp (regulated operation) -13 User Velocity Mode -14 User Torque Mode -15 Internal position regulation (regulated and controlled) 1 Profile Position Mode (position controller with positioning mode) 3 Profile Velocity Mode (speed regulator with setpoint value ramp) 4 Torque Profile Mode (torque regulator with setpoint value ramp) 6 Homing Mode (reference travel) 7 Interpolated Position Mode The operating mode can only be set via the object modes_of_operation. Since a change in operating mode can take some time, one must wait until the newly selected mode appears in the object modes_of_operation_display. During this time, "Invalid operating mode" (-1) may be displayed briefly. 6.2 Operating mode homing (Homing Mode) 6.2.1 Overview This chapter describes how the motor controller searches for the reference position. There are various methods to determine this position (Object 6098h: homing_method). Fig. 6.1 Reference travel The user can determine the speed, acceleration and type of reference travel. With the object home_offset, the zero position of the drive can be displaced to any position desired. There are two reference travel speeds. The higher search velocity (speed_during_search_for_switch) is used to find the limit switch or the reference switch. Then, to exactly determine the position of the switch edge, the system switches to crawl speed (speed_during_search_for_zero). Festo P.BE-CMMS-CO-SW-EN 1012a 113 6. Operating modes The drive to the zero position under CANopen is normally not a component of the reference travel. If all necessary variables are know to the motor controller (e.g. because it already knows the position of the zero pulse), no physical movement is performed. 6.2.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 607Ch VAR home_offset INT32 rw 6098h VAR homing_method INT8 rw 6099h ARRAY homing_speeds UINT32 rw 609Ah VAR homing_acceleration UINT32 rw 2045h VAR homing_timeout UINT16 rw Affected objects from other chapters Index Object Name Type Chapter 6040h VAR controlword UINT16 5 Device control 6041h VAR statusword UINT16 5 Device control Object 607Ch: home_offset The object home_offset establishes the shift of the zero position compared to the determined reference position. Home Position Zero Position home_offset Fig. 6.2 Home Offset 114 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Index 607Ch Name home_offset Object Code VAR Data Type INT32 Access rw PDO Mapping yes Units position units Value Range -- Default Value 0 Object 6098h: homing_method A series of different methods are provided for reference travel. Through the object homing_method, the variant needed for the application can be selected. Index 6098h Name homing_method Object Code VAR Data Type INT8 Access rw PDO Mapping yes Units Value Range -18, -17, -2, -1, 1, 2, 17, 18, 33, 34, 35 Default Value 17 Value Direction Objective Point of reference for zero -18 Positive Stop Stop -17 Negative Stop Stop -2 Positive Stop Zero pulse -1 Negative Stop Zero pulse 1 Negative Limit switch Zero pulse 2 Positive Limit switch Zero pulse 17 Negative Limit switch Limit switch 18 Positive Limit switch Limit switch 33 Negative Zero pulse Zero pulse 34 Positive Zero pulse Zero pulse No travel Current actual position 35 Festo P.BE-CMMS-CO-SW-EN 1012a 115 6. Operating modes For reference travel with the motors of the EMMS-ST series, no transmitter is needed for methods 17, 18 and 35. The homing_method can only be set when homing is not active. Otherwise, an error message (see chapter 3.5) is returned. The process of the individual methods is described in detail in chapter 6.2.3. Object 6099h: homing_speeds This object determines the speeds used during the reference travel. Index 6099h Name homing_speeds Object Code ARRAY No. of Elements 2 Data Type UINT32 Sub-Index 01h Description speed_during_search_for_switch Access rw PDO Mapping yes Units speed units Value Range -- Default Value 100 Sub-Index 02h Description speed_during_search_for_zero Access rw PDO Mapping yes Units speed units Value Range -- Default Value 10 116 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Object 609Ah: homing_acceleration The object homing_acceleration determines the acceleration that is used during homing for all acceleration and braking processes. Index 609Ah Name homing_acceleration Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units acceleration units Value Range -- Default Value 80000 6.2.3 Reference Travel Processes The various reference travel methods are depicted in the following illustrations. The circled numbers correspond to the code to be entered in the object homing_method. Method 1: Negative limit switch with zero pulse evaluation With this method, the drive first moves relatively quickly in a negative direction until it reaches the negative limit switch. This is depicted in the diagram through the rising edge. After that, the drive moves back slowly and searches for the exact position of the limit switch. The zero position refers to the first zero pulse of the angle encoder in the positive direction from the limit switch. Fig. 6.3 Reference travel to the negative limit switch with evaluation of the zero pulse Festo P.BE-CMMS-CO-SW-EN 1012a 117 6. Operating modes Method 2: Positive limit switch with zero pulse evaluation With this method, the drive first moves relatively quickly in a positive direction until it reaches the positive limit switch. This is depicted in the diagram through the rising edge. After that, the drive moves back slowly and searches for the exact position of the limit switch. The zero position refers to the first zero pulse of the angle encoder in the negative direction from the limit switch. Fig. 6.4 Reference travel to the positive limit switch with evaluation of the zero pulse Method 17: Reference travel to the negative limit switch With this method, the drive first moves relatively quickly in a negative direction until it reaches the negative limit switch. This is depicted in the diagram through the rising edge. After that, the drive moves back slowly and searches for the exact position of the limit switch. The zero position refers to the falling edge from the negative limit switch. Fig. 6.5 Reference travel to the negative limit switch 118 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Method 18: Reference travel to the positive limit switch With this method, the drive first moves relatively quickly in a positive direction until it reaches the positive limit switch. This is depicted in the diagram through the rising edge. After that, the drive moves back slowly and searches for the exact position of the limit switch. The zero position refers to the falling edge from the positive limit switch. Fig. 6.6 Reference travel to the positive limit switch Method –1: Negative stop with zero pulse evaluation With this method, the drive first moves in a negative direction until it reaches the stop. The I2t integral of the motor rises hereby to a maximum 90 %. The stop must be mechanically dimensioned so that it does not suffer damage in the parametrised maximum current. The zero position refers to the first zero pulse of the angle encoder in the positive direction from the stop. Fig. 6.7 Reference travel to the negative stop with evaluation of the zero pulse Festo P.BE-CMMS-CO-SW-EN 1012a 119 6. Operating modes Method –2: Positive stop with zero pulse evaluation With this method, the drive first moves in a positive direction until it reaches the stop. The I2t integral of the motor rises hereby to a maximum 90 %. The stop must be mechanically dimensioned so that it does not suffer damage in the parametrised maximum current. The zero position refers to the first zero pulse of the angle encoder in the negative direction from the stop. Fig. 6.8 Reference travel to the positive stop with evaluation of the zero pulse Method –17: Reference travel to the negative stop With this method, the drive first moves in a negative direction until it reaches the stop. The I2t integral of the motor rises hereby to a maximum 90 %. The stop must be mechanically dimensioned so that it does not suffer damage in the parametrised maximum current. The zero position refers directly to the stop. Fig. 6.9 Reference travel to the negative stop Method –18: Reference travel to the positive stop With this method, the drive first moves in a positive direction until it reaches the stop. The I2t integral of the motor rises hereby to a maximum 90 %. The stop must be mechanically dimensioned so that it does not suffer damage in the parametrised maximum current. The zero position refers directly to the stop. Fig. 6.10 Reference travel to the positive stop 120 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Methods 33 and 34: Homing to the zero pulse With methods 33 and 34, the direction of homing is negative or positive. The zero position refers to the first zero pulse from the angle encoder in the direction of search. Fig. 6.11 Reference travel only with reference to the zero pulse Method 35: Homing to the current position With method 35, the reference position refers to the current position. 6.2.4 Control of Reference Travel Homing is controlled and monitored through the controlword / statusword. The start is made by setting bit 4 in the controlword. Successful completion of the travel is shown by a set bit 12 in the object statusword. A set bit 13 in the object statusword shows that an error has occurred during homing. The cause of the error can be determined via the objects error_register and pre_defined_error_field. Bit 4 Significance 0 Reference travel is not active 0→1 Start reference travel 1 Reference travel is active 1→0 Reference travel interrupted Table 6.1: Description of the bits in the controlword Bit 13 Bit 12 Significance 0 0 Reference travel is not completed yet 0 1 Reference travel performed successfully 1 0 Reference travel not performed successfully 1 1 Prohibited status Table 6.2: Description of the bits in the status word Festo P.BE-CMMS-CO-SW-EN 1012a 121 6. Operating modes 6.3 Positioning Operating Mode (Profile Position Mode) 6.3.1 Overview The structure of this operating mode is evident in Fig. 6.12: The target position (target_position) is passed on to the curve generator. This generates a setpoint position value (position_demand_value) for the position controller, which is described in the Position Controller chapter (Position Control Function, chapter 4.6). These two function blocks can be set independently of each other. Trajectory Generator Parameters target_position (607Ah) Trajectory Generator Position Control Law Parameters position_demand_value (60FDh) Position Control Function control_effort (60FAh) Fig. 6.12 Curve generator and position controller All input variables of the curve generator are converted with the variables of the factor group (see chap. 4.2) into the internal units of the regulator. The internal variables are marked here with an asterisk and are normally not needed by the user. 122 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes 6.3.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 607Ah VAR target_position INT32 rw 6081h VAR profile_velocity UINT32 rw 6082h VAR end_velocity UINT32 rw 6083h VAR profile_acceleration UINT32 rw 6084h VAR profile_deceleration UINT32 rw 6086h VAR motion_profile_type INT16 rw 6085h VAR quick_stop_deceleration UINT32 rw Affected objects from other chapters Index Object Name Type Chapter 6040h VAR controlword INT16 5 Device control 6041h VAR statusword UINT16 5 Device control 605Ah VAR quick_stop_option_code INT16 5 Device control 607Eh VAR polarity UINT8 4.2 Conversion factors 6093h ARRAY position_factor UINT32 4.2 Conversion factors 6094h ARRAY velocity_encoder_factor UINT32 4.2 Conversion factors 6097h ARRAY acceleration_factor UINT32 4.2 Conversion factors Object 607Ah: target_position The object target_position (target position) determines which position of the motor controller should be traveled to. The current setting for speed, acceleration, brake delay and type of travel profile (motion_profile_type) etc. must be considered thereby. The target position (target_position) is interpreted either as an absolute or relative statement (controlword, bit 6). Index 607Ah Name target_position Object Code VAR Data Type INT32 Access rw PDO Mapping yes Units position units Value Range -- Default Value 0 Festo P.BE-CMMS-CO-SW-EN 1012a 123 6. Operating modes Object 6081h: profile_velocity The object profile_velocity specifies the speed that is normally reached at the end of the acceleration ramp during positioning. The object profile_velocity is specified in speed units. Index 6081h Name profile_velocity Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units speed_units Value Range -- Default Value 0 Object 6082h: end_velocity The object end_velocity (end speed) defines the speed the drive must have when it reaches the target position (target_position). Normally, this object must be set to zero so that the motor controller stops when it reaches the target position (target_position). For continuous positioning, a speed different from zero can be specified. The object end_velocity is specified in the same units as the object profile_velocity. Index 6082h Name end_velocity Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units speed units Value Range -- Default Value 0 124 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Object 6083h: profile_acceleration The object profile_acceleration specifies the acceleration with which the motor accelerates to the setpoint speed. It is specified in user-defined acceleration units. (See chapter 4.2: Factor Group). Index 6083h Name profile_acceleration Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units acceleration units Value Range -- Default Value -- Object 6084h: profile_deceleration The object profile_deceleration specifies the deceleration with which the motor is braked. It is specified in user-defined acceleration units. (See chapter 4.2: Factor Group). Index 6084h Name profile_deceleration Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units acceleration units Value Range -- Default Value -- Object 6085h: quick_stop_deceleration The object quick_stop_deceleration specifies with which braking deceleration the motor stops when a Quick Stop is performed. The object quick_stop_deceleration is specified in the same unit as the object profile_deceleration. Festo P.BE-CMMS-CO-SW-EN 1012a 125 6. Operating modes Index 6085h Name quick_stop_deceleration Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units acceleration units Value Range -- Default Value -- Object 6086h: motion_profile_type The object motion_profile_type is used to select the type of positioning profile. Index 6086h Name motion_profile_type Object Code VAR Data Type INT16 Access rw PDO Mapping yes Units -- Value Range 0, 2 Default Value 0 Value Curve form 0 linear ramp 2 Jerk-free ramp 126 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes 6.3.3 Functional description There are two possibilities for passing on a target position to the motor controller: Simple positioning task If the motor controller has reached a target position, it signals this to the host with the bit target_reached (bit 10 in the object statusword). In this operating mode, the motor controller stops when it has reached the goal. Sequence of positioning tasks After the motor controller has reached a target, it immediately begins travelling to the next target. This transition can occur smoothly, without the motor controller meanwhile coming to a standstill. These two methods are controller through the bits new_set_point and change_set_immediatly in the object controlword and set_point_acknowledge in the object statusword. These bits are in a question-answer relationship to each other. This makes it possible to prepare a positioning task while another is still running. Fig. 6.13 Positioning task transmittal from a host In Fig. 6.13, you can see how the host and the motor controller communicate with each other via the CAN bus: First, the positioning data (target position, travel speed, end speed and acceleration) are transmitted to the motor controller. When the positioning data record has been completely written (1), the host can start positioning by setting the bit new_set_point in the controlword to "1" (2). After the motor controller recognises the new data and takes it over into its buffer, it reports this to the host by setting the bit set_point_acknowledge in the statusword (3). Then the host can begin to write a new positioning data set into the motor controller (4) and delete the bit new_set_point again (5). Only when the motor controller can accept a new positioning job (6) does it signal this through a "0" in the set_point_acknowledge bit. Before this, no new positioning may be started by the host (7). Festo P.BE-CMMS-CO-SW-EN 1012a 127 6. Operating modes In Fig. 6.14, a new positioning task is only started after the previous one has been completely finished. To determine this, the host evaluates the bit target_reached in the object statusword. Fig. 6.14 Simple positioning task In Fig. 6.15, a new positioning task is already started while the previous one is still in process. The host already passes the subsequent target on to the motor controller when the motor controller signals with deletion of the bit set_point_acknowledge that it has read the buffer and started the related positioning. In this way, positioning tasks follow each other seamlessly. For this operating mode, the object end_velocity should be written over with the same value as the object profile_velocity so that the motor controller does not briefly brake to zero each time between the individual positioning tasks. Fig. 6.15 Continuous sequence of positioning tasks If besides the bit new_set_point the bit change_set_immediately is also set to "1" in the controlword, the host instructs the motor controller to start the new positioning task immediately. In this case, a positioning task already in process is interrupted. 128 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes 6.4 Interpolated Position Mode 6.4.1 Overview The interpolated position mode (IP) permits continuous specification of position setpoint values in a multi-axis use of the motor controller. To do this, synchronisation telegrams (SYNC) and nominal position values are specified by a higher-level controller in a fixed time grid (synchronisation interval). Since the interval is normally greater than one position controller cycle, the motor controller independently interpolates the data values between two specified position values, as shown in the following diagram. 4 1 Position setpoint time slot pattern 2 Position control cycle time 1 3 3 Interpolated sequence of the position 4 Interpolated sequence of the position 2 Fig. 6.16 Positioning task linear interpolation between two data values In the following, the objects needed for the interpolated position mode are described first. A subsequent functional description comprehensively covers the activation and sequencing of parameter setting. Festo P.BE-CMMS-CO-SW-EN 1012a 129 6. Operating modes 6.4.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 60C0h VAR interpolation_submode_select INT16 rw communication_cycle_period UINT32 ro 1006h_00h 60C1h REC interpolation_data_record rw 60C4h REC interpolation_data_configuration rw 60C2h REC interpolation_time_period rw Affected objects from other chapters Index Object Name Type Chapter 6040h VAR controlword INT16 5 Device control 6041h VAR statusword UINT16 5 Device control 6094h ARRAY velocity_encoder_factor UINT32 4.2 Conversion factors 6097h ARRAY acceleration_factor UINT32 4.2 Conversion factors Object 60C0h: interpolation_submode_select The type of interpolation is established via the object interpolation_submode_select. Currently, only the manufacturer-specific variant "Linear Interpolation without Buffer" is available. Index 60C0h Name interpolation_submode_select Object Code VAR Data Type INT16 Access rw PDO Mapping yes Units -- Value Range -2 Default Value -2 Value Interpolation type -2 Linear Interpolation without Buffer 130 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Object 60C1h: interpolation_data_record The object record interpolation_data_record represents the actual data record. It consists of an entry for the position value (ip_data_position). The position value is interpreted as absolute. Index 60C1h Name interpolation_data_record Object Code RECORD No. of Elements 1 Sub-Index 01h Description ip_data_position Data Type INT32 Access rw PDO Mapping yes Units position units Value Range -- Default Value -- Object 60C2h: interpolation_time_period The synchronisation interval can be set via the object record interpolation_time_period. Via ip_time_index, the unit (ms or 1/10 ms) of the interval is established, which is parametrised via ip_time_units. To achieve synchronisation, the complete controller cascade (current, speed and position controller) is synchronised up to the external cycle. A change in the synchronisation interval is therefore effective only after a reset. Therefore, if the interpolation interval is to be changed via the CAN bus, the parameter set must be saved (see chapter 4.1) and a reset performed (see chapter 3.7) so that the new synchronisation interval becomes effective. The synchronisation interval must be maintained exactly. Index 60C2h Name interpolation_time_period Object Code RECORD No. of Elements 2 Festo P.BE-CMMS-CO-SW-EN 1012a 131 6. Operating modes Sub-Index 01h Description ip_time_units Data Type UINT8 Access rw PDO Mapping yes Units gemäß ip_time_index Value Range ip_time_index = -3: 1, 2, ... , 9, 10 ip_time_index = -4: 10, 20, ... , 90, 100 Default Value -- Sub-Index 02h Description ip_time_index Data Type INT8 Access rw PDO Mapping yes Units -- Value Range -3, -4 Default Value -4 Value ip_time_units is specified in -3 10-3 seconds (ms) -4 10-4 seconds (0.1 ms) A change in the synchronisation interval is effective only after a reset. If the interpolation interval is to be changed via the CAN bus, the parameter set must be saved and a reset performed. Object 1006h_00h: communication_cycle_period Through the object communication_cycle_period, the time set in μs in the object 60C2h_01h can be read. Sub-Index 00h Description communication_cycle_period Access ro PDO Mapping no Units μs Value Range -- Default Value 1900h 132 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Object 60C4h: interpolation_data_configuration Through the object record interpolation_data_configuration, the type (buffer_organisation) and size (max_buffer_size, actual_buffer_size) of a possibly available buffer as well as access to this (buffer_position, buffer_clear) can be configured. The size of a buffer element can be read out via the object size_of_data_record. Although no buffer is available for the interpolation type "Linear interpolation without buffer"‚ access via the object buffer_clear must still be enabled in this case as well. Index 60C4h Name interpolation_data_configuration Object Code RECORD No. of Elements 6 Sub-Index 01h Description max_buffer_size Data Type UINT32 Access ro PDO Mapping no Units -- Value Range 0 Default Value 0 Sub-Index 02h Description actual_size Data Type UINT32 Access rw PDO Mapping yes Units -- Value Range 0 ... max_buffer_size Default Value 0 Sub-Index 03h Description buffer_organisation Data Type UINT8 Access rw PDO Mapping yes Units -- Value Range 0 Default Value 0 Festo P.BE-CMMS-CO-SW-EN 1012a 133 6. Operating modes Value Significance 0 FIFO Sub-Index 04h Description buffer_position Data Type UINT16 Access rw PDO Mapping yes Units -- Value Range 0 Default Value 0 Sub-Index 05h Description size_of_data_record Data Type UINT8 Access wo PDO Mapping yes Units -- Value Range - Default Value - Sub-Index 06h Description buffer_clear Data Type UINT8 Access wo PDO Mapping yes Units -- Value Range 0, 1 Default Value 0 Value Significance 0 Delete buffer / access to 60C1h not permitted 1 Access to 60C1h enabled 134 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes 6.4.3 Functional description Preparatory parameter setting Before the motor controller can be switched into the operating mode interpolated position mode, various settings must be made: These include setting of the interpolation interval (interpolation_time_period), that is, the time between two SYNC telegrams, the interpolation type (interpolation_submode_select) and the type of synchronisation (interpolation_sync_definition). In addition, access to the position buffer must be enabled via the object buffer_clear. EXAMPLE Task Type of interpolation Time unit Time interval CAN object / COB -2 60C0h, interpolation_submode_select 0.1 ms 60C2h_02h, interpolation_time_index 4 ms 60C2h_01h, interpolation_time_units Save parameters 1010h_01h, save_all_parameters Perform reset NMT reset node Waiting for bootup Buffer activation Generate SYNC = -2 = -04 = 40 = 1 Bootup message 1 60C4h_06h, buffer_clear SYNC (matrix 4 ms) Activation of the interpolated position mode and synchronisation The IP is activated through the object modes_of_operation (6060h). Starting with this time, the motor controller tries to synchronise itself to the external time grid, which is specified through the SYNC telegrams. If the motor controller was successfully able to synchronise itself, it reports the operating mode interpolated position mode in the object modes_of_operation_display (6061h). During synchronisation, the motor controller reports back invalid mode of operation (-1). If the SYNC-telegrams are not sent in the right time grid after completed synchronisation, the motor controller switches back into the invalid mode of operation. If the mode of operation is taken up, transfer of position data to the drive can begin. As is logical, the higher-order controller first reads the current actual position out of the controller and writes it cyclically into the motor controller as a new setpoint value (interpolation_data_record). Takeover of data by the motor controller is activated via handshake bits of the controlword and statusword. By setting the bit enable_ip_mode in the controlword, the host shows that evaluation of the position data should begin. The data records are evaluated only when the motor controller acknowledges this via the status bit ip_mode_selected in the statusword. In detail, therefore, the following assignment and procedure result: Festo P.BE-CMMS-CO-SW-EN 1012a 135 6. Operating modes Fig. 6.17 Synchronisation and data release No. Event CAN Object 1 Generate SYNC message 2 Request of the ip operating mode 6060h, modes_of_operation = 07 3 Wait until operating mode is taken 6061h, modes_of_operation_display = 07 4 Reading out the current actual position 6064h, position_actual_value 5 Writing back as current setpoint position 60C1h_01h, ip_data_position 6 Start of interpolation 6040h, controlword, enable_ip_mode 7 Acknowledgement by motor controller 6041h, statusword, ip_mode_active 8 Changing the current setpoint position in accordance with trajectory 60C1h_01h, ip_data_position After the synchronous travel process is ended, deletion of the bit enable_ip_mode prevents further evaluation of position values. Then the system can switch into another operating mode, if necessary. 136 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Interruptions of interpolation in case of error If an ongoing interpolation type (ip_mode_active set) is interrupted by a controller error, the drive first acts as specified for the respective error (e.g. removal of the controller enable and change into the status SWICTH_ON_DISABLED). The interpolation can only be continued through a new synchronisation, since the motor controller must be brought back into the status OPERATION_ENABLE, through which the bit ip_mode_active is deleted. 6.5 Speed adjustment operating mode (Profile Velocity Mode) 6.5.1 Overview The speed-regulated operation (Profile Velocity Mode) contains the following subfunctions: - Setpoint value generation through the ramp generator - Speed recording through differentiation via the angle encoder - Speed regulation with appropriate input and output signals - Limitation of the torque setpoint value (torque_demand_value) - Monitoring of the actual speed (velocity_actual_value) with the window function/threshold The significance of the following parameters is described in the Positioning chapter (Profile Position Mode): profile_acceleration, profile_deceleration, quick_stop. Festo P.BE-CMMS-CO-SW-EN 1012a 137 6. Operating modes Limit Function target_velocity (60FFh) [speed units] Multiplier Profile Velocity velocity_encoder_factor (6094h) profile_acceleration (6083h) [acceleration units] profile_deceleration (6084h) [acceleration units] Quick_stop_deceleration (6085h) [acceleration units] Profile Acceleration Multiplier velocity_demand_value (606Bh) Profile Deceleration Quick Stop Deceleration accelaration_factor (6097h) position_actual_value (6063h) Differentiation d/dt velocity_actual_value (606Ch) velocity_demand_value (606Bh) velocity_control_parameter_set (60F9h) Velocity Controller control effort velocity_actual_value (606Ch) SPDC_SPDC_N_TARGET_WIN_SPEED (0x00FA) velocity_actual_value (606Ch) SPDC_SPDC_N_TARGET_WIN_SPEED (0x00FA) Window Comparator status_word (6041h) velocity = 0 Window Comparator status_word (6041h) velocity_reached Fig. 6.18 Structure of the speed-regulated operation (profile velocity mode) 138 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes 6.5.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 6069h VAR velocity_sensor_actual_value INT32 ro 606Bh VAR velocity_demand_value INT32 ro 606Ch VAR velocity_actual_value INT32 ro 6080h VAR max_motor_speed UINT32 rw 60FFh VAR target_velocity INT32 rw Affected objects from other chapters Index Object Name Type Chapter 6040h VAR controlword INT16 5 Device control 6041h VAR statusword UINT16 5 Device control 6063h VAR position_actual_value_s INT32 4.6 Position controller 6069h VAR velocity_sensor_actual_value INT32 4.6 Position controller 6071h VAR target_torque INT16 6.6 Torque controller 6072h VAR max_torque_value UINT16 6.6 Torque controller 607Eh VAR polarity UINT8 4.2 Conversion factors 6083h VAR profile_acceleration UINT32 6.3 Positioning 6084h VAR profile_deceleration UINT32 6.3 Positioning 6085h VAR quick_stop_deceleration UINT32 6.3 Positioning 6086h VAR motion_profile_type INT16 6.3 Positioning 6094h ARRAY velocity_encoder_factor UINT32 4.2 Conversion factors Festo P.BE-CMMS-CO-SW-EN 1012a 139 6. Operating modes Object 6069h: velocity_sensor_actual_value With the object velocity_sensor_actual_value, the value of a possible speed encoder can be read out in internal units. A separate speed encoder cannot be connected in the CMMS/CMMD family. Therefore, to determine the actual speed value, the object 606Ch should be used. Index 6069h Name velocity_sensor_actual_value Object Code VAR Data Type INT32 Access ro PDO Mapping yes Units Angle difference in increments per second (65536 increments = 1 R) Value Range -- Default Value -- Object 606Bh: velocity_demand_value The current speed setpoint value of the speed regulator can be read with this object. It is acted upon by the setpoint value of the ramp and curve generators. If the position controller is activated, its correction speed is also added. Index 606Bh Name velocity_demand_value Object Code VAR Data Type INT32 Access ro PDO Mapping yes Units speed units Value Range -- Default Value -- 140 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Object 606Ch: velocity_actual_value The actual speed value can be read via the object velocity_actual_value. Index 606Ch Name velocity_actual_value Object Code VAR Data Type INT32 Access ro PDO Mapping yes Units speed units Value Range -- Default Value -- Object 6080h: max_motor_speed The object max_motor_speed gives the highest allowed speed for the motor in min-1. The object is used to protect the motor and can be taken from the motor technical data. The speed setpoint value is limited to this value. Index 6080h Name max_motor_speed Object Code VAR Data Type UINT16 Access rw PDO Mapping yes Units min-1 Value Range 0 ... 32768 min-1 Default Value 3,000 min-1 Object 60FFh: target_velocity The object target_velocity is the setpoint specification for the ramp generator. Index 60FFh Name target_velocity Object Code VAR Data Type INT32 Access rw PDO Mapping yes Units speed units Value Range -- Default Value -- Festo P.BE-CMMS-CO-SW-EN 1012a 141 6. Operating modes Object 2090h: velocity_ramps Selected as modes_of_operation profile_velocity_mode; the setpoint value ramp is also activated. And so it is possible to limit a jump-like setpoint change to a specific speed change per time via the objects profile_acceleration and profile_deceleration. The controller not only permits specification of different values for braking deceleration and acceleration, but also differentiation between positive and negative speed. The following illustration depicts this behaviour: V 2090h_04h velocity_acceleration_neg 2090h_05h velocity_deceleration_neg t 2090h_03h velocity_deceleration_pos 2090h_02h velocity_acceleration_pos Fig. 6.19 Speed ramps The object group velocity_ramps is available to parametrise these 4 accelerations. Note that the objects profile_acceleration and profile_deceleration change the same internal accelerations as the velocity_ramps. If the profile_acceleration is written, velocity_acceleration_pos and velocity_acceleration_neg are changed together; if the profile_deceleration is written, velocity_deceleration_pos and velocity_deceleration_neg are changed together. Index 2090h Name velocity_ramps Object Code RECORD No. of Elements 5 Sub-Index 02h Description velocity_acceleration_pos Data Type INT32 Access rw PDO Mapping no Units -- Value Range -- Default Value -- 142 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Sub-Index 03h Description velocity_deceleration_pos Data Type INT32 Access rw PDO Mapping no Units -- Value Range -- Default Value -- Sub-Index 04h Description velocity_acceleration_neg Data Type INT32 Access rw PDO Mapping no Units -- Value Range -- Default Value -- Sub-Index 05h Description velocity_deceleration_neg Data Type INT32 Access rw PDO Mapping no Units -- Value Range -- Default Value -- Festo P.BE-CMMS-CO-SW-EN 1012a 143 6. Operating modes 6.6 Torque regulation operating mode (Profile Torque Mode) 6.6.1 Overview This chapter describes torque-regulated operation. This operating mode allows an external torque setpoint value target_torque, which can be smoothed using the integrated ramp generator, to be specified for the motor controller. It is thus possible for this motor controller to also be used for path control, with which both the position controller and the speed regulator are displaced to an external computer. Fig. 6.20 Structure of torque-regulated operation The parameters ramp steepness torque_slope and ramp shape torque_profile_type must be specified for the ramp generator. If the bit 8 halt is set in the controlword, the ramp generator lowers the torque down to zero. It rises correspondingly again to the setpoint torque target_torque when bit 8 is deleted again. In both cases, the ramp generator takes into account the ramp steepness torque_slope and the ramp shape torque_profile_type. All definitions within this document refer to rotatable motors. If linear motors have to be used, all "torque" objects must refer to a "force" instead. For simplicity, the objects do not appear twice and their names should not be changed. The operating modes positioning mode (profile position mode) and speed regulator (profile velocity mode) need the torque controller to work. That is why it is always necessary to set its parameters. 144 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes 6.6.2 Description of the Objects Objects treated in this chapter Index Object Name Type Attr. 6071h VAR target_torque INT16 rw 6072h VAR max_torque UINT16 rw 6074h VAR torque_demand_value INT16 ro 6076h VAR motor_rated_torque UINT32 rw 6077h VAR torque_actual_value INT16 ro 6079h VAR dc_link_circuit_voltage UINT32 ro 60F7h RECORD power_stage_parameters rw 60F6h RECORD torque_control_parameters rw 6078h VAR current_actual_value INT16 ro Affected objects from other chapters Index Object Name Type Chapter 6040h VAR controlword INT16 5 Device control 60F9h RECORD motor_parameters 6073h VAR max_current UINT16 4.4 Current regulator and motor adjustment 6075h VAR motor_rated_current UINT32 4.4 Current regulator and motor adjustment 4.4 Current regulator and motor adjustment Object 6071h: target_torque This parameter is the setpoint value for the torque regulator in torque-regulated operation (Profile Torque Mode). It is specified in thousandths of the nominal torque (object 6076h). Index 6071h Name target_torque Object Code VAR Data Type INT16 Access rw PDO Mapping yes Units motor_rated_torque / 1000 Value Range -32768 ... 32768 Default Value 0 Festo P.BE-CMMS-CO-SW-EN 1012a 145 6. Operating modes Object 6072h: max_torque This value represents the motor's maximum permissible torque. It is specified in thousandths of the nominal torque (object 6076h). If, for example, a 2-fold overloading of the motor is briefly permissible, the value 2000 is entered here. The object 6072h: max_torque corresponds with the object 6073h: max_current and may not be overwritten until the object 6075h: motor_rated_current is overwritten with a valid value. Index 6072h Name max_torque Object Code VAR Data Type UINT16 Access rw PDO Mapping yes Units motor_rated_torque / 1000 Value Range 1000 ... 65536 Default Value 1675 Object 6074h: torque_demand_value By means of this object, the current setpoint torque can be read out in thousandths of the nominal torque (6076h). The internal limitations of the controller (current limit values and I2t monitoring) are hereby taken into account. Index 6074h Name torque_demand_value Object Code VAR Data Type INT16 Access ro PDO Mapping yes Units motor_rated_torque / 1000 Value Range -- Default Value -- 146 Festo P.BE-CMMS-CO-SW-EN 1012a 6. Operating modes Object 6076h: motor_rated_torque This object specifies the nominal torque of the motor. This can be taken from the motor's name plate. It is entered in the unit 0.001 Nm. Index 6076h Name motor_rated_torque Object Code VAR Data Type UINT32 Access rw PDO Mapping yes Units 0.001 Nm Value Range -- Default Value 1499 Object 6077h: torque_actual_value By means of this object, the motor's actual torque can be read out in thousandths of the nominal torque (object 6076h). Index 6077h Name torque_actual_value Object Code VAR Data Type INT16 Access ro PDO Mapping yes Units motor_rated_torque / 1000 Value Range -- Default Value -- Object 6078h: current_actual_value By means of this object, the motor's actual current can be read out in thousandths of the nominal current (object 6075h). Index 6078h Name current_actual_value Object Code VAR Data Type INT16 Access ro PDO Mapping yes Units motor_rated_current / 1000 Value Range -- Default Value -- Festo P.BE-CMMS-CO-SW-EN 1012a 147 6. Operating modes Object 6079h: dc_link_circuit_voltage The intermediate circuit voltage of the controller can be read via this object. The voltage is specified in the unit millivolts. Index 6079h Name dc_link_circuit_voltage Object Code VAR Data Type UINT32 Access ro PDO Mapping yes Units mV Value Range -- Default Value -- 148 Festo P.BE-CMMS-CO-SW-EN 1012a 7. Index 7. Index A Acceleration at of the Homing............................. 118 brake (positioning) ......................... 126 quick stop (positioning).................. 127 acceleration_factor.............................. 62 Actual position value (position units) .. 82 Actual speed value ............................ 142 Actual torque value ........................... 148 Actual value position in position_units (position_actual_value)................. 82 torque (torque_actual_value)......... 148 actual_size ........................................ 134 Angle encoder offset............................ 73 B buffer_clear ....................................... 135 buffer_organisation........................... 134 buffer_position .................................. 135 C CAN-interface pin assignment ................................. 13 cob_id_sync......................................... 31 cob_id_used_by_pdo .......................... 26 Contouring error .................................. 77 current value .................................... 83 definition .......................................... 77 error window .................................... 83 timeout time..................................... 83 Contouring error time-out time............ 83 Contouring error window ..................... 83 Control of the regulator ....................... 97 control_effort....................................... 84 Controller enable ................................. 68 Controller enable logic......................... 68 controlword ....................................... 102 bit assignment.......................... 99, 103 commands...................................... 104 object description........................... 102 Conversion factors............................... 55 choice of prefix ................................. 65 position factor .................................. 57 Festo P.BE-CMMS-CO-SW-EN 1012a Correction speed ................................. 80 Current controller gain .................................................. 74 parameter......................................... 74 time constant.................................... 74 Current limitation................................. 86 Current setpoint value ....................... 147 current_actual_value......................... 148 current_limitation ................................ 86 Curve generator................................. 123 Cycle time Heartbeat telegrams? ......... 46 Cycle time PDOs................................... 26 D dc_link_circuit_voltage...................... 149 Device control...................................... 97 Digital inputs ....................................... 87 Digital outputs..................................... 88 statuses............................................ 88 digital_inputs ...................................... 87 digital_outputs .................................... 88 digital_outputs_data ........................... 88 Divisor acceleration_factor........................... 62 velocity_encoder_factor ................... 59 drive_data ..................................... 68, 89 E EMERGENCY ........................................ 31 EMERGENCY Message ......................... 31 structure of the................................. 31 Enable logic ......................................... 68 enable_logic ........................................ 68 encoder_offset_angle.......................... 73 end_velocity ...................................... 125 Error controller error ................................. 31 SDO error messages ......................... 20 Error Control Protocol heartbeat.................................... 45, 46 Error management ............................... 95 Error register ....................................... 31 error_management .............................. 95 149 7. Index F Factor group ........................................ 55 acceleration_factor........................... 62 polarity ............................................. 65 position_factor ................................. 56 velocity_encoder_factor ................... 59 firmware_custom_version ................... 94 firmware_main_version ....................... 94 first_mapped_object ........................... 27 following_error .................................... 77 following_error_actual_value .............. 83 following_error_time_out .................... 83 following_error_window...................... 83 fourth_mapped_object ........................ 28 identity_object .................................... 92 iit_ratio_motor..................................... 72 iit_time_motor..................................... 72 inhibit_time ......................................... 26 Interpolation data.............................. 132 Interpolation type .............................. 131 interpolation_data_configuration...... 134 interpolation_data_record................. 132 interpolation_submode_select.......... 131 interpolation_time_period................. 132 ip_data_position ............................... 132 ip_time_index.................................... 133 ip_time_units..................................... 133 K G km_release .......................................... 94 Gain of the Current controller .............. 74 guard_time .......................................... 50 L H Heartbeat ...................................... 45, 46 home_offset ...................................... 116 Homing .............................................. 114 acceleration.................................... 118 control of the .................................. 122 creep speed.................................... 117 method ........................................... 116 search speed .................................. 117 speeds............................................ 117 zero point offset ............................. 116 Homing Methods ............................... 118 Homing Mode .................................... 114 Homing Mode home_offset ............... 116 Homing Mode Homing_acceleration.. 118 Homing Mode homing_method ......... 116 Homing Mode homing_speeds .......... 117 homing_acceleration ......................... 118 homing_method ................................ 116 homing_speeds ................................. 117 I I2t extent of utilisation ......................... 72 I2t time ................................................. 72 Identification of the device .................. 92 Identifier NMT Service ..................................... 47 Identifier for PDO................................. 26 150 life_time_factor ................................... 50 Limit switch ......................... 89, 118, 119 emergency stop ramp....................... 90 polarity ............................................. 89 limit_current ........................................ 86 limit_current_input_channel ............... 86 limit_switch_deceleration.................... 90 limit_switch_polarity ........................... 89 Load default parameters ..................... 53 M Manufacturer code .............................. 92 Mapping parameter for PDOs .............. 27 max_buffer_size ................................ 134 max_current ........................................ 71 max_motor_speed............................. 142 max_torque ....................................... 147 Maximum motor speed...................... 142 Maximum Torque............................... 147 Mode of operation homing ........................................... 114 modify of the .................................. 112 read of the ...................................... 114 modes_of_operation ......................... 112 modes_of_operation_display .... 113, 114 Monitoring from Communication ... 45, 46 motion_profile_type .......................... 127 Festo P.BE-CMMS-CO-SW-EN 1012a 7. Index Motor parameter I2t time.............................................. 72 nominal current ................................ 70 pin (pair) number.............................. 71 resolver offset angle......................... 73 Motor peak current.............................. 71 motor_data.................................... 72, 73 motor_rated_current ........................... 70 motor_rated_torque .......................... 148 N Network management ......................... 47 New position travel to........................ 128 NMT Service ........................................ 47 Nominal current motor................................................ 70 Nominal motor current ........................ 70 Nominal torque of the motor ............. 148 Not Ready to Switch On ..................... 100 Number of Mapped Objects................. 27 Number of pin pairs ............................. 71 Number of pins .................................... 71 number_of_mapped_objects............... 27 Numerator acceleration_factor........................... 62 position_factor ................................. 57 velocity_encoder_factor ................... 59 O Objects Object 1003h ..................................... 43 Object 1003h_01h.............................. 44 Object 1003h_02h.............................. 44 Object 1003h_03h.............................. 44 Object 1003h_04h.............................. 44 Object 1005h ..................................... 31 Object 100C1h................................... 50 Object 100Dh .................................... 50 Object 1010h ..................................... 54 Object 1010h_01h.............................. 54 Object 1011h ..................................... 53 Object 1011h_01h.............................. 53 Object 1017h ..................................... 46 Object 1018h ..................................... 92 Object 1018h_01h.............................. 92 Object 1018h_02h.............................. 93 Object 1018h_03h.............................. 93 Object 1018h_04h.............................. 93 Festo P.BE-CMMS-CO-SW-EN 1012a Object 1400h ..................................... 29 Object 1401h ..................................... 30 Object 1600h ..................................... 29 Object 1601h ..................................... 30 Object 1800h ............................... 26, 28 Object 1800h_01h.............................. 26 Object 1800h_02h.............................. 26 Object 1800h_03h.............................. 26 Object 1801h ..................................... 29 Object 1A00h............................... 27, 28 Object 1A00h_00h ............................. 27 Object 1A00h_01h ............................. 27 Object 1A00h_02h ............................. 27 Object 1A00h_03h ............................. 28 Object 1A00h_04h ............................. 28 Object 1A01h..................................... 29 Object 2014h ..................................... 29 Object 2015h ..................................... 29 Object 204Ah..................................... 90 Object 204Ah_05h ............................. 91 Object 204Ah_06h ............................. 91 Object 2090h ................................... 143 Object 2090h_02h............................ 143 Object 2090h_03h............................ 144 Object 2090h_04h............................ 144 Object 2090h_05h............................ 144 Object 2100h ..................................... 95 Object 2415h ..................................... 86 Object 2415h_01h.............................. 86 Object 2415h_02h.............................. 86 Object 6040h.................................. 102 Object 6041h ................................... 107 Object 604Dh .................................... 71 Object 6060h ................................... 112 Object 6061h ........................... 113, 114 Object 6062h ..................................... 81 Object 6063h ..................................... 82 Object 6064h ..................................... 82 Object 6065h ..................................... 83 Object 6066h ..................................... 83 Object 6067h ..................................... 84 Object 6068h ..................................... 85 Object 6069h ................................... 141 Object 606Bh .................................. 141 Object 606Ch ................................... 142 Object 6071h ................................... 146 Object 6072h ................................... 147 151 7. Index Object 6073h ..................................... 71 Object 6074h ................................... 147 Object 6075h ..................................... 70 Object 6076h ................................... 148 Object 6077h ................................... 148 Object 6078h ................................... 148 Object 6079h ................................... 149 Object 607Ah................................... 124 Object 607Ch................................... 116 Object 607Eh ..................................... 65 Object 6080h ................................... 142 Object 6081h ................................... 125 Object 6082h ................................... 125 Object 6083h ................................... 126 Object 6084h ................................... 126 Object 6085h ................................... 127 Object 6086h ................................... 127 Object 6093h ..................................... 56 Object 6093h_01h.............................. 57 Object 6093h_02h.............................. 57 Object 6094h ..................................... 59 Object 6094h_01h.............................. 59 Object 6094h_02h.............................. 59 Object 6097h ..................................... 62 Object 6097h_01h.............................. 62 Object 6097h_02h.............................. 62 Object 6098h ................................... 116 Object 6099h ................................... 117 Object 6099h_01h............................ 117 Object 6099h_02h............................ 117 Object 609Ah................................... 118 Object 60C0h................................... 131 Object 60C1h................................... 132 Object 60C1h_01h............................ 132 Object 60C2h................................... 132 Object 60C2h_01h............................ 133 Object 60C2h_02h............................ 133 Object 60C4h................................... 134 Object 60C4h_01h ........................... 134 Object 60C4h_02h ........................... 134 Object 60C4h_03h ........................... 134 Object 60C4h_04h ........................... 135 Object 60C4h_05h ........................... 135 Object 60C4h_06h ........................... 135 Object 60F4h ..................................... 83 Object 60F6h ..................................... 74 Object 60F6h_01h .............................. 74 152 Object 60F9h ..................................... 76 Object 60F9h_01h .............................. 76 Object 60F9h_02h ........................ 74, 76 Object 60F9h_04h .............................. 76 Object 60FAh ..................................... 84 Object 60FBh ..................................... 80 Object 60FBh_01h .............................. 80 Object 60FBh_04h .............................. 80 Object 60FBh_05h .............................. 81 Object 60FDh ..................................... 87 Object 60FEh ..................................... 88 Object 60FEh_01h .............................. 88 Object 60FFh ................................... 142 Object 6410h ............................... 72, 73 Object 6410h_03h.............................. 72 Object 6410h_04h.............................. 72 Object 6410h_10h.............................. 73 Object 6410h_11h.............................. 73 Object 6510h ............................... 68, 89 Object 6510h_10h.............................. 68 Object 6510h_11h.............................. 89 Object 6510h_15h.............................. 90 Object 6510h_31h.............................. 69 Object 6510h_A9h ............................. 94 Object 6510h_AAh ............................. 94 Object 6510h_ADh ............................. 94 Offset of the angle encoder ................. 73 Operating mode......................... 112, 114 setting of the .................................. 112 speed adjustment........................... 138 torque regulations.......................... 145 Output stage enable ............................ 68 Output stage parameter ...................... 68 enable logic ...................................... 68 P Parameter sets download and save........................... 52 load default parameters ................... 53 save parameter set ........................... 54 Parameter setting ................................ 52 PDO ..................................................... 22 1. Entered Object.............................. 27 2. Entered Object.............................. 27 3. Entered Object.............................. 28 4. Entered Object.............................. 28 Festo P.BE-CMMS-CO-SW-EN 1012a 7. Index RPDO1 1. Entered Object........................... 29 2. Entered Object........................... 29 3. Entered Object........................... 29 4. Entered Object........................... 29 COB-ID used by PDO ..................... 29 first mapped object ....................... 29 fourth mapped object.................... 29 identifier........................................ 29 no. of entered objects ................... 29 number of mapped objects ........... 29 second mapped object .................. 29 third mapped object...................... 29 transmission type.......................... 29 RPDO2 1. Entered Object........................... 30 2. Entered Object........................... 30 3. Entered Object........................... 30 4. Entered Object........................... 30 COB-ID used by PDO ..................... 30 first mapped object ....................... 30 fourth mapped object.................... 30 identifier........................................ 30 no. of entered objects ................... 30 number of mapped objects ........... 30 second mapped object .................. 30 third mapped object...................... 30 transmission type.......................... 30 TPDO1 1. Entered Object........................... 28 2. Entered Object........................... 28 3. Entered Object........................... 28 4. Entered Object........................... 28 COB-ID used by PDO ..................... 28 first mapped object ....................... 28 fourth mapped object.................... 28 identifier........................................ 28 inhibit time.................................... 28 no. of entered Objects................... 28 number of mapped objects ........... 28 second mapped object .................. 28 third mapped object...................... 28 transmission type.......................... 28 transmit mask ............................... 29 Festo P.BE-CMMS-CO-SW-EN 1012a TPDO2 1. Entered Object........................... 29 2. Entered Object........................... 29 3. Entered Object........................... 29 4. Entered Object........................... 29 COB-ID used by PDO ..................... 29 first mapped object ....................... 29 fourth mapped object.................... 29 identifier........................................ 29 inhibit time .................................... 29 no. of entered Objects ................... 29 number of mapped objects ........... 29 second mapped object .................. 29 third mapped object ...................... 29 transmission type.......................... 29 transmit mask ............................... 29 PDO Message ...................................... 22 Peak current motor................................................ 71 Permissible Torque............................ 147 phase_order ........................................ 73 Pin assignment .................................... 13 Polarity ................................................ 65 pole_number ....................................... 71 Position control function ..................... 77 Position controller ............................... 77 dead zone......................................... 81 gain .................................................. 80 output of the .................................... 84 parameter......................................... 80 Position controller gain........................ 80 Position controller output.................... 84 Position controller parameter .............. 80 Position setpoint (position units) ........ 81 Position value interpolation............... 132 position_actual_value ......................... 82 position_control_gain.......................... 80 position_control_parameter_set ......... 80 position_control_v_max ...................... 80 position_demand_value ...................... 81 position_error_tolerance_window....... 81 position_factor .................................... 56 position_reached................................. 78 position_window ................................. 84 position_window_time ........................ 85 153 7. Index Positioning ........................................ 128 braking deceleration ...................... 126 handshake...................................... 128 quick stop deceleration .................. 127 speed in.......................................... 125 target position................................ 124 Positioning braking deceleration ....... 126 Positioning profile jerk-free.......................................... 127 linear .............................................. 127 sinus2 ............................................. 127 Positioning speed .............................. 125 Positioning start ................................ 128 power_stage_temperature .................. 69 pre_defined_error_field....................... 43 producer_heartbeat_time.................... 46 Product code ....................................... 93 product_code ...................................... 93 Profile position Mode profile_deceleration ....................... 126 profile_acceleration........................... 126 profile_deceleration .......................... 126 profile_velocity.................................. 125 Profiles position Mode end_velocity ................................... 125 profile_acceleration........................ 126 profile_velocity............................... 125 quick_stop_deceleration ................ 127 target_position............................... 124 Profiles Position Mode motion_profile_type ....................... 127 Profiles Torque Mode ........................ 145 current_actual_value...................... 148 max_torque .................................... 147 motor_rated_torque ....................... 148 target_torque ................................. 146 torque_actual_value ...................... 148 torque_demand_value ................... 147 Profiles Velocity Mode ....................... 138 max_motor_speed.......................... 142 target_velocity................................ 142 velocity_actual_value..................... 142 velocity_demand_value.................. 141 velocity_sensor .............................. 141 154 Q Quick stop deceleration..................... 127 quick_stop_deceleration ................... 127 R Ready to Switch On............................ 100 Receive_PDO_1 ................................... 29 Receive_PDO_2 ................................... 30 Reference switch ................................. 89 Release number................................... 94 Resolver offset angle ........................... 73 resolver_offset_angle.......................... 73 restore_all_default_parameters .......... 53 restore_parameters ............................. 53 Revision number CANopen .................. 93 revision_number.................................. 93 R-PDO 1 ............................................... 29 R-PDO 2 ............................................... 30 S sample_data........................................ 90 sample_position_falling_edge............. 91 sample_position_rising_edge.............. 91 Sampling position falling edge....................................... 91 rising edge........................................ 91 Save parameter set.............................. 54 save_all_parameters ........................... 54 Scaling factors ..................................... 55 choice of prefix ................................. 65 position factor .................................. 57 SDO ..................................................... 18 Error messages................................. 20 SDO message ...................................... 18 second_mapped_object ...................... 27 serial_number ..................................... 93 Setpoint speed for speed adjustment 142 Setpoint torque (torque regulation) .. 146 Setpoint value current............................................ 147 position (position units) ................... 81 torque............................................. 146 Setting of the operating mode ........... 112 size_of_data_record .......................... 135 Speed at of the homing ............................. 117 in positioning.................................. 125 Festo P.BE-CMMS-CO-SW-EN 1012a 7. Index Speed adjustment ............................. 138 max. motor speed........................... 142 setpoint speed................................ 142 speed sensor selection................... 141 target speed ................................... 142 Speed regulator................................... 75 filter time constant ........................... 76 gain .................................................. 76 parameter......................................... 76 time constant ................................... 76 Speed sensor selection...................... 141 speed_during_search_for_switch...... 117 speed_during_search_for_zero ......... 117 standard_error_field_0........................ 44 standard_error_field_1........................ 44 standard_error_field_2........................ 44 standard_error_field_3........................ 44 State Not Ready to Switch On.................. 100 Ready to Switch On ........................ 100 Switch On Disabled ........................ 100 Switched On ................................... 100 Status Not Ready to Switch On.................. 100 Ready to Switch On ........................ 100 Switch On Disabled ........................ 100 Switched On ................................... 100 Status word bit assignment................................ 107 object description........................... 107 Stop........................................... 120, 121 store_parameters ................................ 54 Switch On Disabled ........................... 100 SYNC.................................................... 30 SYNC message..................................... 30 T Target position .................................. 124 Target position window ....................... 84 Target speed for speed adjustment ... 142 Target torque (torque regulation)...... 146 Target window position window ............................... 84 time .................................................. 85 Target window time ............................. 85 target_position .................................. 124 target_torque ............................ 145, 146 Festo P.BE-CMMS-CO-SW-EN 1012a target_velocity................................... 142 third_mapped_object .......................... 28 Time constant of the Current controller 74 Torque limitation ................................. 86 scaling .............................................. 86 setpoint value................................... 86 source .............................................. 86 Torque regulation actual torque value......................... 148 current setpoint value .................... 147 max. torque .................................... 147 nominal torque ............................... 148 setpoint torque............................... 146 target torque .................................. 146 Torque regulations ............................ 145 torque_actual_value.......................... 148 torque_control_gain ............................ 74 torque_control_parameters................. 74 torque_control_time............................ 74 torque_demand_value ...................... 147 Torque-limited speed operation .......... 86 T-PDO 1 ............................................... 28 T-PDO 2 ............................................... 29 tpdo_1_transmit_mask........................ 29 tpdo_2_transmit_mask........................ 29 Transfer parameters for PDOs ............. 26 transfer_PDO_1 ................................... 28 transfer_PDO_2 ................................... 29 transmission_type ............................... 26 transmit_pdo_mapping ....................... 27 transmit_pdo_parameter..................... 26 Turn-through protection ...................... 75 Type of transmission ........................... 26 V velocity_acceleration_neg ................. 144 velocity_acceleration_pos ................. 143 velocity_actual_value ........................ 142 velocity_control_filter_time................. 76 velocity_control_gain .......................... 76 velocity_control_parameter_set .......... 76 velocity_control_time .......................... 76 velocity_deceleration_neg................. 144 velocity_deceleration_pos................. 144 velocity_demand_value..................... 141 velocity_encoder_factor ...................... 59 velocity_ramps .................................. 143 155 7. Index velocity_sensor_actual_value ........... 141 vendor_id ............................................ 92 Version number of the customer-specific variant .............................................. 94 Version number of the firmware .......... 94 156 W Wiring instructions .............................. 14 Z Zero point offset ................................ 116 Zero pulse.......................................... 122 Festo P.BE-CMMS-CO-SW-EN 1012a